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Abstract Circular codes, putative remnants of primeval comma-free codes, have
gained considerable attention in the last years. In fact they represent a second kind
of genetic code potentially involved in detecting and maintaining the normal read-
ing frame in protein coding sequences. The discovering of an universal code across
species suggested many theoretical and experimental questions. However, there is a
key aspect that relates circular codes to symmetries and transformations that remains
to a large extent unexplored. In this article we aim at addressing the issue by studying
the symmetries and transformations that connect different circular codes. The main
result is that the class of 216 C3 maximal self-complementary codes can be parti-
tioned into 27 equivalence classes defined by a particular set of transformations. We
show that such transformations can be put in a group theoretic framework with an
intuitive geometric interpretation. More general mathematical results about symmetry
transformations which are valid for any kind of circular codes are also presented. Our
results pave the way to the study of the biological consequences of the mathematical
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structure behind circular codes and contribute to shed light on the evolutionary steps
that led to the observed symmetries of present codes.

Keywords Circular codes · Symmetry · Genetic code ·
Nucleotide transformations · Group theory

Mathematics Subject Classification 92D20 · 94B50 · 94B60 · 62P10

1 Introduction

Protein synthesis implies the decoding of the template information as sequences of
nucleotides along nucleic acids into the amino acids that form a nascent protein. In this
process accuracy is crucial: even a single error in the incorporation of the amino acid
into the polypeptide chain may be the cause of diminished or even absent functionality
in a biologically active protein. Accuracy of translation depends on accurate frame
maintenance, on the correct pairing between codons and tRNA-anticodons inside the
ribosome, and also on the correct charging of tRNAs with their cognate amino acids.
This latter operation is ensured by a kind of enzymes called aaRSs (aminoacyl tRNA
synthetases). Protein coding sequences are read by the synthesis machinery sequen-
tially in groups of three nucleotides (codons). A codon is mapped to a specific amino
acid through the genetic code, a translation table that connects the 64 possible codons
with the 20 amino acids (plus punctuation marks). As mentioned, the maintenance of
the correct reading frame is essential. A shift of one or two nucleotides of the position
of the ribosome along the coding sequence leads to a frame-shift error that changes
completely the identity of the coded amino acids. Excluding the case of programmed
frame-shifts, where an alternative protein is coded in a frame different from the normal
one, usually frame-shift errors are deleterious.

At the beginning of molecular genetics a possible simultaneous solution for the
implementation of the genetic code and for frame synchronization was proposed.
Before the discovery of the actual structure of the standard genetic code, Crick con-
jectured the existence of a code possessing the comma freeness property (Crick et al.
1957). Such kind of codes aroused interest from the point of view of coding theory
because they are a particular type of error correcting codes (Golomb et al. 1958).
In comma-free codes, a subset of the 64 possible codons are used for coding the 20
amino acids. The subset is chosen in such a way that a unique natural reading frame
is allowed: the reading of a sequence out-of-frame produces invalid codons (codons
that do not belong to the allowed subset). These codes are also called self synchro-
nizing because they allow to discriminate the correct reading frame in any position
along the sequence. They allow also to reject non-valid codons, that is, they allow the
detection of errors in coding sequences. Unfortunately, the proposal of Crick turned
out to be wrong (Hayes 1998). However, recent works have shown that a particular
kind of related codes, i.e. circular codes, are indeed used in protein-coding sequences.
Circular codes are a less restrictive version of comma-free codes and can be used
for normal reading frame retrieval (Frey and Michel 2006; Michel et al. 2008). One
such instance is the so-called X0 code empirically found both in eukaryotes and in
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prokaryotes (Arquès and Michel 1996). In a recent study (Gonzalez et al. 2011), it has
been shown that, on average, the code X0 has the best covering capability but there is
a great variability as some codes are preferred over others, depending on the type of
organism. This poses important biological questions about the existence of a unique
universal code like X0 rather than thinking about the codes in terms of classes. The
connections between protein-coding sequences and normal reading frame synchro-
nization have been studied also by using a recently developed mathematical theory
of the genetic code (Gonzalez 2004, 2008). In particular, it is possible to retrieve the
reading frame of a protein coding sequence by using the information of dichotomic
classes, quantities that are derived from the mentioned model (Giannerini et al. 2012).
Dichotomic classes possess precise mathematical properties and a group structure that
suggest that symmetries and transformations play a crucial role in the organization of
genetic information. Moreover, in Michel and Pirillo (2011) and Michel et al. (2012) it
is stressed the importance of the symmetric group for the study of circular codes. Thus,
it is natural to ask whether symmetries and transformations also play an important role
in characterizing circular codes and frame synchronization.

In the present work we study the symmetry properties of circular codes. In particu-
lar, we focus on the class of 216 maximal, self-complementary, C3 codes (X0 belongs
to this class). In Sect. 2 we introduce the notation and define the set of transforma-
tions on the nucleotides and on the indices. Section 3 contains the results that connect
circular codes and transformations. The main theorem proves that there is a subgroup
of transformations of the nucleotides such that the set of 216 codes is invariant. These
transformations are the bijections that commute with the complementary transforma-
tion and allow to classify the 216 codes into 27 equivalence classes. Moreover, we
show that the 88 codes (Koch and Lehmann 1997; Lacan and Michel 2001) that can be
obtained from the nucleotide frequencies in the positions of the codon are contained
exactly in 11 of the 27 classes; in accordance with Lacan and Michel (2001) we call
these 88 codes Nucleotide Frequency or “NF codes”. We present also an intuitive geo-
metrical interpretation of the results and further theorems that establish the conditions
under which circularity is preserved. The importance of the reverse symmetry follows
naturally from our findings. Section 4 provides conclusions and perspectives.

2 Codons and transformations

The genetic code is written with words of three letters, codons, built over an alphabet

B := {U (T ), C, A, G}

of four letters, nucleotide bases Uracil (Thymine), Cytosine, Adenine, and Guanine,
in short U (T ), C, A, G. The symmetric group on the set B is defined as

SB = {π : B→ B | π is bijective}

with the usual group operation given by composition as functions. The group SB
has 24 elements and is isomorphic to the symmetric group S4 on four elements (see
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Rotman 1995 for more details on group theory and symmetric groups). We will use
standard notation as can be found in Rotman (1995), e.g. we will either write πAGCT

or π : (A, T, C, G)→ (G, A, T, C) if π satisfies π(A) = G, π(T ) = A, π(C) = T ,
and π(G) = C . Bijective mappings π : B → B can be applied componentwise to
x ∈ B3, the set of codons, and thus induce a bijective map B3 → B3 which we will
denote also by π .

Notice that, as shown in Gonzalez et al. (2008), there are 4 bijective transformations
that are invariant with respect to the chemical characters of the nucleotides (we will
use the notations from Fimmel et al. 2013). These are the Identity:

I (or id) : (A, T, C, G)→ (A, T, C, G);
Strong/weak (SW) or complementary transformation:

SW (or c) : (A, T, C, G)→ (T, A, G, C);
Pyrimidine/purine (YR) or parity transformation:

YR (or p) : (A, T, C, G)→ (G, C, T, A);
and Keto/Amino (KM) or Rumer’s transformation:

KM (or r) : (A, T, C, G)→ (C, G, A, T ).

In the following, we will use the convention that {I, SW, YR, KM} are used when we
want to stress the biological context whereas {id, c, p, r} are used when we want to
put the focus on the mathematical properties. Especially the complementary mapping
SW (which we also denote with c) will be used.

For a subset X ⊆ B3 of the 64 codons in B3 and a map π : B3 → B3 we define
π(X) as

π(X) := {π(x)|x ∈ X}.
Now let us consider the symmetric group (S3, ◦), where

S3 := {α : {1, 2, 3} → {1, 2, 3} | α is bijective}
and ◦ denotes the composition of mappings. For instance: (132) ∈ S3 is the permuta-
tion such that 1 �→ 3, 2 �→ 1, 3 �→ 2. Clearly, any such α induces a mapping on the
set of codons B3 by permuting the order of the bases in the codons, e.g. (132) sends
a codon (b1, b2, b3) to (b3, b1, b2). Hence, for a given X ⊆ B3, we have that π(X)

(for π : B3 → B3) is a transformation of the nucleotides of X whereas α(X) (for
α ∈ S3) is a permutation of the positions of a codon. As we will show below, this is a
difference that plays a crucial role from the biological point of view. In what follows
we will focus on the subgroup of cyclical permutations of (S3, ◦) denoted by

A3 := {α0 = (1)(2)(3), α1 = (123), α2 = (132)} ⊂ S3
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(A3, ◦) is known as the alternating subgroup of (S3, ◦) and its group table is given by

In particular, we have

α1 ◦ α1 = α2 and α2 ◦ α2 = α1 and α1 ◦ α2 = α2 ◦ α1 = α0. (1)

Moreover, A3 forms a normal subgroup of S3 (in symbols A3�S3), i.e. πA3π
−1 =

A3 for all π ∈ S3 (see Rotman 1995 for more details on normal subgroups). As
mentioned above, S3 defines a group action on the set of codons and therefore we will
call two codons x1, x2 ∈ B3 cyclically equivalent if there exists a mapping α ∈ A3
such that

α(x1) = x2.

In this case we write x1 ∼ x2. For instance, given the codon ATG we have
α1(ATG) = TGA and α2(ATG) = GAT, hence ATG ∼ TGA ∼ GAT. The relation
∼ is an equivalence relation on the set of codons B3 since A3 forms a group. In this
paper we are interested in the equivalence (conjugacy) classes induced by∼. Clearly,
the equivalence classes of the codons AAA, CCC, GGG, TTT contain only one ele-
ment since the elements are permutation invariant. The remaining twenty equivalence
classes have three elements each.

Another (biologically) important element of S3 is the reversing permutation of the
indices (31)(2) which is not an element of A3. We will indicate this permutation
by ←− so that given a codon x = (b1, b2, b3) ∈ B3 we have ←−x := (b3, b2, b1).
The reversing permutation is an important transformation that appears ubiquitously in
genetic sequences, for example in inverse transpositions (see e.g. Lewin 2004, pp. 469–
470). Moreover, some proteins could be coded in the reverse sense, which is usual
in mitochondria; also, it has been suggested that inversion is a primeval symmetry
intimately related to the origin of protein coding (Gonzalez et al. 2012).

By the normality of A3 in S3 it is easy to see that

←−−−
α1(x) = α2(

←−x ) and
←−−−
α2(x) = α1(

←−x ) (2)

for all x ∈ B3. In other words, the reversing permutation and the circular permutations
do not commute but α1 and α2 are exchanged. On the other hand every transformation
of the nucleotides π commutes with every permutation of the indices α, i.e.

π ◦ α = α ◦ π, (3)

where π ∈ SB and α ∈ S3. This property will be used later on.
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3 Circular codes and transformations

Circular codes, as previously remarked, are a less restrictive version of comma-free
codes and seem to play a key role in normal reading frame retrieval and maintenance;
they are a sort of second genetic code (Arquès and Michel 1996; Michel 2008). More-
over, due to their properties, they could be the relics of some primeval comma-free
codes, i.e., codes where punctuation signs are not needed for retrieving the correct
reading frame. In the framework of protein synthesis we can define a circular code
as a set of codons so that any arbitrary (circular) concatenation of codons of the set
cannot be decomposed in a different frame by concatenating codons of the same code;
in brief, there is only one valid frame for reading the sequence with only words of the
code. In more mathematical terms a precise definition of a circular code and of some
additional properties that they possess is as follows:

Definition 1 Let X ⊆ B3. We will call a set of codons X a trinucleotide circular code
if any word over the alphabet B written on a circle has at most one decomposition
into words from X . By word written on a circle it is intended that after the last letter
the word starts again (from its first letter). We will call a trinucleotide circular code X
maximal if it contains exactly 20 codons (i.e. |X | = 20).

To illustrate the above definition let us consider the following example: Assume
that ACG ∈ X . Then the word ACGACG can also be read on the circle as CGACGA or
GACGAC. But these are exactly the words α1(ACG)α1(ACG) and α2(ACG)α2(ACG).
Thus we have the following remark.

Remark 1 A trinucleotide circular code X ⊆ B3 can contain at most one element from
each complete equivalence class (with respect to ∼) and cannot contain the codons
AAA, CCC, GGG, TTT since every codon from X is also a word over B. Thus, a
trinucleotide circular code can contain at most 20 codons and there are at most 320

potential different maximal trinucleotide circular codes.

Here are some examples of trinucleotide circular codes (verification is by easy
calculations)

– X = {ATC, TCC, CAA}
– X = {GGT, GGC, ACT, ACC, AGC, AGT, GAC, GAT, GTC, GTT,AAT, ATT,AAC,

ATC, GCT, GCC}
Among the trinucleotide circular codes there are some codes that turned out to be
of special biological interest, namely those that are also self-complementary and C3-
codes.

Definition 2 Let X ⊆ B3. We will say that X is a C3-code if X , as well as X1 and
X2 are circular, where X1 := α1(X) and X2 := α2(X).

Note that by definition any C3-code is also circular.

Definition 3 Let X ⊆ B3. We will call X self-complementary if for each codon x ∈ X

its anticodon
←−−
c(x) is also in X :

x ∈ X ⇔←−−c(x) ∈ X.

123



Circular codes, symmetries and transformations

We will also use the notation

X =←−−c(X).

In Remark 2 we will see that there are maximal circular codes (even C3-codes) that
are not self-complementary and also self-complementary codes that are not C3. As
shown in Michel and Pirillo (2010) the class of self-complementary maximal C3-
codes, which we denote by C, contains 216 codes. The universal X0 code discovered
in Arquès and Michel (1996) is one of these 216 codes.

In the following, we prove that self-complementary C3-codes are intimately related
both to bijective transformations and to the reversing permutation. This allows us to
divide the 216 maximal self-complementary C3-codes into 27 equivalence classes. In
each of these equivalence classes we have 8 maximal self-complementary C3-codes
that are related by a set of transformations π ∈ SB. Moreover, the equivalence classes
have a geometrical interpretation implied by the symmetry group of the square. We
have the following main results: the first one shows when circularity and the C3-
property are preserved under transformations and permutations.

Theorem 1 The following hold:

– The identical and the reversing permutations are the sole permutations of the
positions of the bases of a codon which preserve the circularity of any circular
code X ⊆ B3.

– Let X ⊆ B3 be a trinucleotide circular code. For every π ∈ SB, π(X) is also a
trinucleotide circular code. Furthermore, If X is a C3-code, then π(X) is also a
C3-code.

Proof See Appendix. ��
The statement about the reversing permutation was already shown in Michel et al.

(2012) (compare Proposition 5). We generalize this statement regarding all permuta-
tions of the positions of the bases and give an independent proof for the case of the
reversing permutation.

The second result proves that only a few special transformations in SB preserve
self-complementarity.

Theorem 2 Let π ∈ SB. Then

π ◦ c = c ◦ π

if and only if π(X) is a trinucleotide circular self-complementary code for every
trinucleotide circular self-complementary code X ⊆ B3.

Proof See Appendix. ��
In simple words, the above theorems prove that there are only 8 base transformations

in SB that, when applied to a trinucleotide self-complementary C3-code, generate a
code of the same class. Theorems 1 and 2 have remarkable consequences. In fact, the
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216 maximal self-complementary C3-codes are naturally divided into 27 equivalence
classes with 8 codes each. Given a code X ∈ C it is possible to obtain immediately
the other 7 codes of C that are in the same equivalence class by simply applying the
following bijective transformations1 that build a subgroup of (SB, ◦):

L := {id, c, p, r, πCG : (A, C, G, T ) �→ (A, G, C, T ), πAT : (A, C, G, T ) �→ (T, C, G, A),

πACTG : (A, C, G, T ) �→ (C, T, A, G), πAGTC : (A, C, G, T ) �→ (G, A, T, C)}.

This group (L , ◦) is not a normal subgroup of (SB, ◦) but it is isomorphic to the
dihedral group D8 (see Rotman 1995 for more details). D8 is known in geometry as
the symmetry group of the square, i.e. all symmetry (distance preserving) mappings of
the square. The well-known fact that the centralizer Cent(D8) = {π ∈ S4 : π ◦ σ =
σ ◦ π for all σ ∈ D8} of D8 inside S4 is the group {id, c} is reflected by the above
Theorem 2 (for more details on group theory see Rotman 1995). In Sect. 3.1 we will
explain geometrically why (L , ◦) is exactly the set of maps from SB that commute
with c.

In Table 1 we show the list of the 216 codes, as taken from the lists in Michel et
al. (2008), divided into the 27 equivalence classes. The universal X0 code discovered
in Arquès and Michel (1996) is labelled with the number 23. As mentioned before,
in Koch and Lehmann (1997) it has been proposed that circular codes are in some
sense a byproduct of the frequencies of the bases in the different positions of a codon.
However in Lacan and Michel (2001) it has been proved that the universal code X0
common to Prokaryotes and Eukaryotes cannot be generated in this way. They showed
that only 88 of the complete set of 216 maximal self-complementary C3-codes can
be generated from the proportion of bases (“NF codes”). Thus, the set of 216 codes
is bi-partitioned in one subset containing the 88 NF codes and one containing the 128
codes of the X0 type (non-NF). In Table 1 we have highlighted the 88 codes of NF
type; surprisingly, they cover exactly 11 of the 27 equivalence classes. This suggests
that the symmetries of the codes reflect indeed their capability of describing protein
coding sequences. Moreover, in Gonzalez et al. (2011) it has been shown that, for
every given Hamming distance from the X0 code, the codes that have a good coverage
over a sample set of coding sequences are never of the NF type. It becomes clear that
the two sub-classes of codes are invariant sets under the transformations in Theorem 2
and Theorem 1. In other words, any transformation of this kind applied to a NF code
gives another NF code and the same holds for non-NF codes.

It is interesting to see some other consequences of Theorems 1 and 2 with respect
to the properties of a maximal self-complementary C3-code. For example, we have
mentioned that codons composed of three equal trinucleotides cannot be part of such
codes. But also four other codons cannot be part of them:

Lemma 1 Let X ⊆ B3 be a trinucleotide circular self-complementary code. Then X
cannot contain any codons of the form Nc(N )N for N ∈ B.

1 Of course, excluding the identity.
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Table 1 Classification of the
216 circular codes of the class C
into the 27 equivalence classes
defined by Theorems 2 and 1

The 88 NF codes are in bold

I SW (c) YR (p) KM (r ) πCG πAT πACTG πAGTC

1 1 100 29 71 2 99 79 22

2 3 101 15 90 5 103 43 62

3 4 102 16 86 6 104 42 61

4 7 97 54 51 9 95 58 46

5 8 98 53 52 10 96 55 45

6 11 91 21 78 39 68 74 31

7 12 88 30 72 38 64 84 27

8 13 87 23 81 37 65 77 33

9 14 92 28 70 36 66 82 26

10 17 89 20 80 40 69 75 34

11 18 94 63 44 41 67 93 19

12 24 83 49 57 73 32 48 60

13 25 85 50 56 76 35 47 59

14 105 147 123 143 106 150 141 124

15 107 148 120 146 112 156 127 139

16 108 152 125 140 110 149 142 122

17 109 153 121 144 114 154 128 137

18 111 151 119 145 116 159 126 138

19 113 158 134 132 115 155 136 129

20 117 157 130 135 118 160 131 133

21 161 211 168 207 162 214 179 197

22 163 215 190 188 165 212 194 185

23 164 216 189 187 166 213 191 186

24 167 208 171 204 178 200 201 174

25 169 210 198 180 177 199 209 170

26 172 205 181 195 202 175 184 196

27 173 206 183 192 203 176 182 193

Proof Assume that X contains a codon of the form Nc(N )N , N ∈ B. Then its anti-
codon c(N )Nc(N ) is also in X and the word

w = Nc(N )Nc(N )Nc(N )

has two different decompositions into the words of X on a circle:

w = Nc(N )Nc(N )Nc(N ) and w′ = c(N )Nc(N )Nc(N )N .

It is a contradiction to the circularity of the code X . ��

Another consequence of Theorems 1 and 2 is the known fact that the circular
permutations of a maximal self-complementary C3-code generate circular codes that
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are not self-complementary (Arquès and Michel 1996; Bussoli et al. 2012). We give
an independent proof for this fact:

Lemma 2 Let X ⊆ B3 be a self-complementary C3-code. Then X1 := α1(X) and
X2 := α2(X) are not self-complementary.

Proof Without loss of generality assume that X1 is self-complementary. Let

x := N1 N2 N3 ∈ X

be an arbitrary codon from X . Since X is self-complementing X contains the anticodon
of x

←−−
c(x) = c(N3)c(N2)c(N1) ∈ X.

Then X1 contains

x1 := N3 N1 N2 ∈ X1 and α1(
←−−
c(x)) = c(N1)c(N3)c(N2) ∈ X1.

We assumed that X1 is self-complementary. Then X1 must contain the anticodon of
x1

←−−
c(x1) = c(N2)c(N1)c(N3) ∈ X1.

This is a contradiction to the circularity of X1 since c(N2)c(N1)c(N3) and also
c(N1)c(N3)c(N2) are in the same conjugacy class. ��
Remark 2 Note that there are maximal self-complementary codes that are not C3 as
well as maximal C3-codes that are not self-complementary. Accordingly to Arquès and
Michel (1996) there are 528 maximal self-complementary circular codes therefore only
216 have the C3-property. Consequently, there are 312 maximal self-complementary
circular codes which are not C3-codes. On the other hand, there are 221,328 maximal
C3-codes (Michel 2013), hence, there are 221,112 maximal C3-codes which are not
self-complementary.

3.1 Geometry of self-complementary circular codes

As we have seen above, there is a subgroup L of SB that preserves the self-
complementarity of circular codes (C3-codes). In this section we are interested in
explaining geometrically why the group L is exactly the subgroup of SB that has this
property. Note that by Theorem 2 any map π ∈ SB maps a C3-code to a C3-code.

In the following, a square will mean an undirected simple triangle-free graph
Q = (V (Q), E(Q)) with sets of vertices V (Q), |V (Q)| = 4 and of edges
E(Q), |E(Q)| = 4 between the vertices where edges are unordered pairs e =
[v,w] ∈ E(Q), v,w ∈ V (Q). Our main example will of course be a square QB
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Fig. 1 The square QB

related to the set B of bases, i.e. QB = (VB, EB) with V (QB) = {A, C, G, T } = B
and E(QB) = {[A, C], [C, T ], [T, G], [G, A]} (see Fig. 1).

Let us recall that in graph theory, an isomorphism of graphs G and H is a bijection
between the vertex sets of G and H σ : V (G) → V (H) such that any two vertices
v and w of G are adjacent in G if and only if σ(v) and σ(w) are adjacent in H ,
i.e. σ is an ’edge-preserving bijection’. In the case, when G and H are one and the
same graph, the bijection is called an automorphism or isometry (symmetry map) of
G. It is easy to see that there are only eight automorphisms of a square, namely the
identity, the (clockwise) rotations of 90◦, 180◦ and 270◦, and the four reflections, i.e.
two reflections about lines joining midpoints of opposite sides, and two reflections
about diagonals. These eight automorphisms, shown in Fig. 2, together with the usual
composition as operation, form a group Sym(Q), the symmetry group of Q that is
isomorphic to the dihedral group D8. For our main example QB defined above, we
obtain the group L as its symmetry group where

L := {id, c, p, r, πCG : (A, C, G, T ) �→ (A, G, C, T ), πAT : (A, C, G, T ) �→ (T, C, G, A),

πACTG : (A, C, G, T ) �→ (C, T, A, G), πAGTC : (A, C, G, T ) �→ (G, A, T, C)}.

is the group defined in the previous section and that corresponds to the transformations
in SB preserving self-complementarity of C3-codes. It is readily seen that the com-
plementing map c corresponds to the rotation by 180◦. We will denote this rotation by
rot180. This fact shows geometrically that c commutes with the maps in L as it was
stated as one part of Theorem 2. In fact, the rotation by 180◦ is the only automor-
phism of the square that commutes with all other automorphisms, i.e. {id, rot180} is
the center of Sym(Q). For instance, rotating by 180◦ and then reflecting about one of
the diagonals (Fig. 3, first row) is the same as first reflecting about the diagonal and
then rotating by 180◦ (Fig. 3, second row).

Now, we want to understand geometrically why there is no permutation of the
vertices of a square (i.e. no other map in SB) that commutes with the rotation by 180◦
other than those coming from the automorphisms. In order to see this it is helpful to
insert two more edges in the picture, namely the diagonals (see Fig. 4). For the reader’s
convenience we stay with our main example QB.

If we apply the rotation by 180◦ rot180, then the two diagonals are invariant, i.e.
[A, T ] goes to [A, T ] and [C, G] goes to [C, G]. If π is a permutation of the vertices
VB that is not an automorphism, then it must map two vertices v,w to a set of vertices
that is not connected by any edge of the square, i.e. the edge [v,w] must be mapped
onto one of the diagonals, say d, under π . In this case, π would correspond to a
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Fig. 2 The symmetry group of the square QB

Fig. 3 The center of the symmetry group of QB contains {id, rot180}. For instance it is shown that rot180
commutes with the reflection about a diagonal. The first row shows rotation plus reflection while the second
one shows the effect of reflection plus rotation

transformation that does not belong to the symmetry group of QB. For instance, in
Fig. 5 π corresponds to twisting the upper part of the square. Still, it might be the
case that such transformation commutes with rotation but Theorem 2 shows that this
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Fig. 4 QB with imaginary
diagonals

Fig. 5 Any map π which is not in the symmetry group of the square QB does not commute with rot180.
This is shown in the figure where π ◦ rot180 (first row) is different from rot180 ◦π (second row)

is not possible. Figure 5 shows clearly that if we first apply π and then rotation (first
row, from left to right) we obtain a different result from applying rotation and then π

(second row, from left to right).
Thus, we have a geometric verification of the fact that the maps in L are the

only transformations in SB that commute with the complementing map c (repre-
sented as a rotation by 180◦). Now we will show the geometrical meaning of self-
complementarity: consider three squares/bases in a row and connect the corresponding
vertices. The geometric figure we obtain is the cuboid shown in Fig. 6, where we have
marked the codon ACG. Again, we are interested in the symmetry group of this object.
However, for our purposes it is enough to see how, for a given codon, one can form
its anticodon in a geometrical way. Assume that x ∈ B3 is given, then its anticodon is

defined as
←−−
c(x). We have seen that forming the complement c(x) can be interpreted as

applying rot180, the rotation by 180◦, in each of the squares in the cuboid. Moreover,
it is obvious that reversion is given by reflection along the plane that is defined by
the middle square (see Fig. 7). We will call this reflection ref. Thus, by applying in
sequence the two automorphisms to a codon (rotation rot180 and reflection ref) one
can form the anticodon geometrically. Such operations are depicted in Figs. 7 and 8,
respectively.
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Fig. 6 The cuboid with the
codon ACG marked

Fig. 7 The cuboid after
reflection along the shaded plane
defined by the middle square.
The reversed codon GCA is
marked

Fig. 8 The cuboid after
reflection ref and rotation rot180
with the anticodon CGT marked

The rotations inside the squares and the reflection of the cuboid commute with
all the automorphisms of the square applied in each of the squares. Hence, given a
self-complementary code X and an automorphism π ∈ L we see that geometrically
forming the anticodon of x ∈ X commutes with applying the transformation π to x .
Thus, the anticodon of π(x) will be the image of the anticodon of x under π and hence
again in π(X) which must then also be self-complementary.

As we have seen it is geometrically clear that the maps in L preserve self-
complementarity since they commute with the geometrical construction of the anti-
codon. It is therefore interesting to ask whether or not there are more automorphisms
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(or even just bijective maps) of the cuboid (or even the set of codons) that preserve
self-complementarity. The answer is negative if we restrict to maps of the cuboid as
the following theorem shows:

Theorem 3 A permutation π of the set of vertices of the cuboid preserves self-
complementarity of codes if and only if it is an automorphism of the cuboid and

commutes with forming the anticodon, i.e. π(
←−−
c(x)) =←−−−−c(π(x)).

Proof See Appendix. ��
Remark 3 If we consider any bijective maps π : B3 → B3 we will find much more
possibilities, namely 32! · 232 different maps preserving self-complementarity. Con-
sider the following construction. We divide first the set of all codons B3 into two

equal-sized subsets H1 and H2 so that H2 = ←−−−c(H1). There are 232 possibilities to do
it: There are 32 codon-anticodon pairs, if we take from each such pair one element we
get subsets H1, H2 := B3\H1. Then we consider an arbitrary bijection π1 : H1 → H1
(32! possibilities to choose it) and extend π1 onto H2 mapping an anticodon to b ∈ H1
on an anticodon to π1(b).

The bijective mapping π : B3 → B3

π(b) =
{

π1(b), b ∈ H1←−−−−−−−
c(π1(

←−−
c(b))), b /∈ H1

will preserve self-complementarity. Such bijections, together with the operation of
composition of mappings, form a group. However, not all of these mappings will
preserve the C3-property.

3.2 Structure of a circular code

Given a code X ∈ C we have that, in view of the self-complementary property, the
20 codons can be divided in two sets (in many different ways): X = x ∪ c(←−x ). This
bipartition is shown for the X0 code (Arquès and Michel 1996) in the first two columns
of Table 2 where we also show the codes X1 = α1(X0) and X2 = α2(X0). Notice that
both X1 and X2 are maximal C3-codes but not self-complementary. The structure of
X1 and X2 can be derived directly from the property listed in Eq. 2. In fact we have

α1(c(
←−x )) = c(

←−−−
α2(x))

α2(c(
←−x )) = c(

←−−−
α1(x))

In practice, since the reversing and the circular permutations do not commute, when we
apply the circular permutation α1 to the set c(←−x ) we obtain the reverse complement of
α2(x). For instance, consider the pair of codons AAC,GTT ∈ X0. Clearly, GTT is the
reverse complement of AAC. Now, if we apply the two circular permutations α1, α2
we obtain ACA,TTG ∈ X1 and CAA,TGT ∈ X2. This time, TTG ∈ X1 (ACA ∈ X1) is
the reverse complement of CAA ∈ X2 (TGT ∈ X2).
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Table 2 Structure of the AM code X0 (code number 23) and its circular permutations X1 = α1(X0) and
X2 = α2(X0)

X0 α1(X0) = X1 α2(X0) = X2

x c(←−x ) α1(x) α1(c(←−x )) α2(x) α2(c(←−x ))

1 AAC GTT ACA TTG CAA TGT

2 AAT ATT ATA TTA TAA TAT

3 ACC GGT CCA GTG CAC TGG

4 ATC GAT TCA ATG CAT TGA

5 CAG CTG AGC TGC GCA GCT

6 CTC GAG TCC AGG CCT GGA

7 GAA TTC AAG TCT AGA CTT

8 GAC GTC ACG TCG CGA CGT

9 GCC GGC CCG GCG CGC CGG

10 GTA TAC TAG ACT AGT CTA

Theorem 2 states that as long as we apply one of the 8 admissible transforma-
tions (set L) we keep all the property of a circular code. Indeed, the complementary
transformation c plays a crucial role in the set L . Surprisingly, given a code X ∈ C,
then c(X) = ←−X . In brief, a circular code in C is built in a way such that its comple-
ment coincides with its reverse. The result arises immediately by looking at Table 3
where we show a circular code X0 ∈ C, X1 = α1(X0) and X2 = α2(X0) together
with its complement c(X0) and the associated permuted codes c(X1) = α1(c(X0)),
c(X2) = α2(c(X0)). Since c commutes with π , then c(X0) is the reverse of X0 and
this is clear by looking at the elements of the two sets. Furthermore, we have the
following relations:

X1 = α1(X0) = α1(c(
←−
X0)) = c(α1(

←−
X0)) = c(

←−−−−
α2(X0)) =←−−−c(X2)

X2 = α2(X0) = α2(c(
←−
X0)) = c(α2(

←−
X0)) = c(

←−−−−
α1(X0)) =←−−−c(X1);

In other words, the first circular permutation of a code X0 coincides with the reverse
second circular permutation of the complement of X0 so that the pair X0, c(X0) =←−X0
together with their circular permutations is in a precise relation. This nice property
alert us on the important role of inversion symmetries along coding sequences. In fact,
in Gonzalez et al. (2012) it has been shown that the symmetries of complementarity
and inversion can be used to derive a complete version of a hypothetical primeval
mitochondrial code composed of codons of four letters (tesserae). We conclude the
section with a corollary and a remark:

Corollary 1 Let X ⊆ B3 be a trinucleotide circular code. Then the set of the anti-

codons of X:
←−−
c(X) is also a trinucleotide circular code. Furthermore, If X is a C3-code

then
←−−
c(X) is also a C3-code.
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Table 3 Structure of a code X0 ∈ C, its circular permutations X1 and X2 and their complement c(X0),
c(X1), c(X2)

X0 X1 X2 c(X0) c(X1) c(X2)

x α1(x) α2(x) c(x)
←−−−−−−
α2(c(←−x ))

←−−−−−−
α1(c(←−x ))

c(←−x ) α1(c(←−x )) α2(c(←−x ))
←−x ←−−−

α2(x)
←−−−
α1(x)

Proof Since←−c is a composition of two mappings such that both of them preserve the
circularity according to the lemma above the claim follows. If X is a C3-code then
X1 := α1(X) and X2 := α2(X) are also circular. The sets of the anticodons of X , X1
and X2 are as just proved also circular codes. Besides, the properties

←−−−
c(X1) = α2(

←−−
c(X)),

←−−−
c(X2) = α1(

←−−
c(X))

take place. So
←−−
c(X) is also a C3-code. ��

Remark 4 The union of a set of codons and their anticodons might not form a circular
code even if the two sets separately are circular codes: for instance, TAT is the anticodon
of ATA, the codes Y = {ATA} and Z = {TAT} are obviously circular but X = Y ∪ Z
is not a circular code.

4 Conclusions

Circular codes represent a key aspect of the organization of genetic information related
to the capability of maintaining the correct reading frame in protein synthesis. A partic-
ular kind of circular codes, namely, maximal, C3 and self-complementary codes show
more or less universal properties across all domains of life, including prokaryotes and
eukaryotes (Arquès and Michel 1996). In this work we have investigated the symmetry
properties of circular codes and established clear connections with group theory and
transformations. Previous studies (Arquès and Michel 1996) proved empirically that
there is a circular code (X0) that, on average, has the best covering capability across
organisms of different species. However, there is a high variability across organisms
so that in some instances the code X0 has a very low coverage whereas other codes
provide a much better description (Gonzalez et al. 2011). Hence, it is likely that the
biological functions associated to circular codes be related to a set of codes rather than
to a single one.

In this paper we have proved two general theorems that allow to predict the con-
sequences of the action of the 24 possible nucleotide bijections on the structure of
circular codes. The importance of the symmetric group SB for the study of circular
codes was also suggested in Michel and Pirillo (2011) and Michel et al. (2012). We
found that any bijection preserves the properties of circularity and C3. Moreover, the
set of 216 maximal, C3 and self-complementary codes, are invariant under the action
of a transformation subgroup of the symmetric group. This subgroup is isomorphic
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to the dihedral group and its elements commute with the complementary transforma-
tion. The dihedral group allows the classification of circular codes in 27 equivalence
classes. Such classification has a surprising biological implication. In fact, the set of
216 C3 maximal and self-complementary codes can be partitioned in two subsets:
the first one (NF) contains the codes that can be generated in the framework of the
hypothesis proposed in Koch and Lehmann (1997), while the second one (non NF)
contains the codes that cannot be generated in such a way (Lacan and Michel 2001).
Now, we have shown that the set of NF codes covers exactly 11 of the 27 equivalence
classes and this proves that the symmetry structure implied by the group theoretic
framework characterizes codes that are related through a biological hypothesis. This
results might be related to the findings of Michel (2013) where they find a similar
partition of a particular set of 27 codes by means of a different approach based on the
search of forbidden combinations of codons.

Since the dihedral group is isomorphic to the symmetry transformations of a square,
we have provided an intuitive geometrical interpretation of these transformations.
Among other properties, we have illustrated the combined action of the reverse and
the complementary transformations in geometrical terms. Starting from a codon it is
possible to derive the anti-codon through geometric arguments. Moreover, based on
symmetry arguments, we have provided hints on the internal structure of circular codes
and this confirms the importance of the complementary and reverse transformations
that have been highlighted in many different contexts (Gonzalez et al. 2012).

The origin of circular codes is still controversial; their existence can be related to
comma-free (self-synchronizable) codes in primeval organisms and they might play
a fundamental role in maintaining the normal reading frame in protein synthesis. The
study of their possible evolution, for example by transition and transversion mutations
(Benard and Michel 2013), represent a challenging research area, being circularity
properties necessarily associated to the hypothetical biological functions. By means of
a clear theoretical framework, our work contributes also to shed light into the general
conditions under which such mutations preserve or not these essential properties.
Moreover, it highlights the essential role of symmetries, and in particular of the dihedral
group, in classifying and interpreting genetic information.

Acknowledgments We would like to thank Alberto Danielli for useful discussions.

Appendix A: Proofs

Proof of Theorem 1

Proof We will write for a codon xi ∈ X xi = Bi
1 Bi

2 Bi
3, Bi

j ∈ B, j = 1, 2, 3.

1. Let us show first that
←−
X is a trinucleotide circular code. The reverse codon to xi

has the form←−xi = Bi
3 Bi

2 Bi
1. Assume that

←−
X is not circular and the word

w =←−x1 · · ·←−xk = B1
3 B1

2 B1
1 · · · Bk

3 Bk
2 Bk

1 , xi ∈ X
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has at least two decompositions into the words from
←−
X written on a circle. Without

lost of generality let us assume that the second decomposition occurs with a shift
by 1. That means that for all 1 ≤ i < k

Bi
2 Bi

1 Bi+1
3 ∈ ←−X and Bk

2 Bk
1 B1

3 ∈
←−
X .

That means that for all 1 ≤ i < k

Bi+1
3 Bi

1 Bi
2 ∈ X and B1

3 Bk
1 Bk

2 ∈ X.

So the word

w′ = xk xk−1 · · · x1 = Bk
1 Bk

2 Bk
3 Bk−1

1 Bk−1
2 Bk−1

3 · · · B1
1 B1

2 B1
3

has at least two decompositions into the words from X with a shift by 2.
Similar arguments work when the second decomposition was obtained by shift of
2 positions.
Let us show now with a counter-example that the remaining four permutations of
the bases α ∈ S3 \ {id,←−} do not guarantee the circularity of α(X):
Let us denote the permutations

p1 = (21)(3), p2 = (1)(32), α1 = (213), α2 = (312)

and consider for example X = {TAA,ATT}. X and Y := α1(X) = {AAT,TTA} are
both circular. But α2(X) = α1(Y ) = p1(X) = p2(Y ) = {ATA,TAT} is not circular
since the word w = ATATAT has two decompositions into the words of X on a
circle: w = ATA,TAT and w′ = TAT,ATA.

2. Assume that π(X) is not circular and the word

w = π(x1) · · ·π(xk) = π(B1
1 )π(B1

2 )π(B1
3 ) · · ·π(Bk

1 )π(Bk
2 )π(Bk

3 ), xi ∈ X

has at least two decompositions into the words from π(X) written on a circle.
Without lost of generality let us assume that the second decomposition occurs
with a shift by 1. That means that for all 1 ≤ i < k

π(Bi
2)π(Bi

3)π(Bi+1
1 ) ∈ π(X) and π(Bk

2 )π(Bk
3 )π(B1

1 ) ∈ π(X).

It implies that for all 1 ≤ i < k

Bi
2 Bi

3 Bi+1
1 ∈ X and Bk

2 Bk
3 B1

1 ∈ X.

In this case the word w′ = π−1(w) has at least two decompositions into the words
from X on a circle. This is a contradiction to the circularity of X .
Similar arguments work when the second decomposition was obtained by shift of
2 positions.
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For all α ∈ S3 and π ∈ SB the property

α(π(X)) = π(α(X))

is true. By the definition of a C3-code X1 := α1(X) and X2 := α2(X) are trinu-
cleotide circular codes. The arguments above show that π(X), π(X1) = α1(π(X))

and π(X2) = α2(π(X)) are circular codes. That means that π(X) is a C3-code.

Proof of Theorem 2

Proof According to the theorem above π(X) is circular. We prove that π(X) is self-
complementary:

←−−−−−
c(π(X)) =←−−−−−π(c(X)) = π(

←−−
c(X)) = π(X)

because of the self-complementarity of X , the property π ◦ c = c ◦π and the fact that
for all α ∈ S3 and π ∈ SB the property

α(π(X)) = π(α(X))

is true.
Let us list all π ∈ SB satisfying π ◦c = c◦π : It is easy to prove that such maps build

a subgroup of (SB, ◦). Consequently, the number of such maps must be a factor of 24.
The following 8 bijective transformations have this property and build a subgroup of
(SB, ◦) (easy to check):

L := {id, c, p, r, πCG : (A, C, G, T ) �→ (A, G, C, T ), πAT : (A, C, G, T ) �→ (T, C, G, A),

πACTG : (A, C, G, T ) �→ (C, T, A, G), πAGTC : (A, C, G, T ) �→ (G, A, T, C)}.

To show that we found all π ∈ SB satisfying π ◦ c = c ◦ π and to exclude the cases
of 24 or 12 elements let us add that for example for

π : A, C, G, T �→ C, A, G, T we have c ◦ π(A) = T �= G = π ◦ c(A)

and it cannot be that we have twelve such maps since 8 is not a factor of 12.
Each π ∈ SB preserves according the theorem above the circularity of X . Let us

show now with a counterexample that it is not the case with the self-complementarity
if π ∈ SB \ L does not commute with c: Consider for example the circular self-
complementary code X := {CTG, CAG}. For
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πAC : A, C, G, T �→ C, A, G, T we get πAC(X) = {ATG,ACG},
πAG : A, C, G, T �→ G, C, A, T we get πAG(X) = {ATA,CGA},
πTG : A, C, G, T �→ A, C, T, G we get πTG(X) = {CGT,CAT},
πTC : A, C, G, T �→ A, T, G, C we get πTC(X) = {TCG,TAG},
πATCG : A, C, G, T �→ T, G, A, C we get πATCG(X) = {GCA,GTA},
πATGC : A, C, G, T �→ T, A, C, G we get πATGC(X) = {AGC,ATC},
πTACG : A, C, G, T �→ C, G, T, A we get πTACG(X) = {GAT,GCT},
πTAGC : A, C, G, T �→ G, T, C, A we get πTAGC(X) = {ACT,AGC},
πATC : A, C, G, T �→ T, A, G, C we get πATC(X) = {ACG,ATG},
πTAC : A, C, G, T �→ C, T, G, A we get πTAC(X) = {TAG,TCG},
πATG : A, C, G, T �→ T, C, A, G we get πATG(X) = {CGA,CTA},
πTAG : A, C, G, T �→ G, C, T, A we get πTAG(X) = {CAT,CGT},
πGTC : A, C, G, T �→ A, G, T, C we get πGTC(X) = {GCT,GAT},
πTGC : A, C, G, T �→ A, T, C, G we get πTGC(X) = {TGC,TAC},
πAGC : A, C, G, T �→ G, A, C, T we get πAGC(X) = {ATC,AGC},
πGAC : A, C, G, T �→ C, G, A, T we get πGAC(X) = {GTA,GCA}.

In each case we get a non-self-complementary code.

Proof of Theorem 3

Proof Let π be any permutation of the set of vertices of the cuboid and take a self-

complementary code X . Let x ∈ X . Then the anticodon
←−−−−
c(π(x)) of the image of x

under π must be contained in π(X), hence is of the form π(x ′) for some x ′ ∈ X . Now
choose a self-complementary code Y with X ∩ Y = {x,

←−−
c(x)}. Then again

←−−−−
c(π(x))

must be in π(Y ) but by assumption this can only be the case if
←−−−−
c(π(x)) = π(

←−−
c(x)),

hence π commutes with forming the anticodon.
Last but not least assume that a permutation π of the set of vertices of the cuboid

commutes with forming the anticodon, hence preserves self-complementarity, but is
not an automorphism. It is easy to see that π must preserve degrees of vertices since
it commutes with ref. Thus π implies a permutation on the middle square which
therefore has to be an automorphism of the middle square because it is assumed to
commute with rot180. Again commuting with ref shows that also the outer squares
must either be invariant or be reflected onto each other followed by an automorphism
of the square.
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