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Abstract. A code X is (>k)-circular if any concatenation of at most k words from X,
when read on a circle, admits exactly one partition into words from X. A code that is
(>k)-circular for all integers k is said to be circular. Any code is (>0)-circular and it
turns out that a code of trinucleotides is circular as soon as it is (>4)-circular. A code is
k-circular if it is (>k)-circular and not (>k + 1)-circular. Due to the explosive combinatorics
of trinucleotide k-circular codes, we developed three classes of algorithms based on: (i) the
smallest directed cycles (directed girth) in graphs; (ii) the eigenvalues of matrices; and (iii)
the files that incrementally save partial results. These different approaches also allow us
to verify the computational results obtained. We determine here the growth functions of
trinucleotide k-circular codes, k varying between 0 and 4, in the general case and in various
particular cases: minimum, minimal, maximum, self-complementary, (k, k, k)-circular and
self-complementary (k, k, k)-circular.

1. Introduction

The concept of k-circular code was recently introduced [3]. It is less restrictive than the
circular code concept. Indeed, a circular code retrieves the reading frame for any concatenation
of words of the code written on a circle. A code is (>k)-circular if a concatenation of at
most k words of the code written on a circle retrieves the reading frame, and it is k-circular if
in addition some concatenation of k + 1 words of the code written on a circle admits several
decompositions into words of the code. It follows that a k-circular code cannot be (>k + 1)-
circular but must be (>j)-circular for all j ≤ k. A code is circular if it is (>k)-circular for
any non-negative integer k. It was proved that k is bounded [3], in the sense that the number
of possible values k for which there exists a k-circular code is bounded in terms of the length
of the words in the code and the size of the alphabet used.
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We carry out here an extensive combinatorial study of the trinucleotide k-circular codes that
constitute an important class of k-circular codes. After having recalled the necessary definitions
and notations in Section 2 and the graph theorem associated to a k-circular code in Section 3,
we present in Section 4 three algorithms that we developed to determine the growth functions
of trinucleotide k-circular codes. In Section 5, several growth functions for different classes
of trinucleotide k-circular codes are identified: general case, minimum, minimal, maximum,
self-complementary, (k, k, k)-circular and self-complementary (k, k, k)-circular.

2. Definitions and notations

We work with the genetic alphabet B := {A,C,G, T}, which has cardinality 4. An element N
of B is called nucleotide. A word over the genetic alphabet is a sequence of nucleotides. A
trinucleotide is a sequence of three nucleotides, that is, an element of B3 using the stan-
dard word-theory notation. If w = N1 · · ·Ns and w′ = N ′1 · · ·N ′t are two sequences of
nucleotides of respective lengths s and t, then the concatenation w · w′ of w and w′ is the
sequence N1 · · ·NsN

′
1 · · ·N ′t composed of s+ t nucleotides.

Given a sequence w = N1N2 · · ·Ns ∈ Bs and an integer j ∈ {0, 1, . . . , s − 1}, the circular
j-shift of w is the word Nj+1 · · ·NsN1 · · ·Nj . Note that the circular 0-shift of w is w itself.
For example, if s = 3 and hence w = N1N2N3 is a trinucleotide, then its circular 0-shift is w
itself, while its circular 1-shift and its circular 2-shift are N2N3N1 and N3N1N2, respectively.
A sequence w′ of nucleotides is a circular shift of w if w′ is the circular j-shift of w for
some j ∈ {0, 1, . . . , s− 1}. The elements in B3 can thus be partitioned into conjugacy classes,
where the conjugacy class of a trinucleotide w ∈ B3 is the set of all circular shifts of w. For
instance, the conjugacy class of the trinucleotide ACG is {ACG,CGA,GAC}. Notice that
the conjugacy class of a trinucleotide w ∈ B3 has size 3 unless w is one of the four periodic
trinucleotides, namely a trinucleotide in P := {AAA,CCC,GGG, TTT}, in which case the
conjugacy class has size 1.

Definition 2.1. Let B be the genetic alphabet.

• A trinucleotide code is a subset of B3, that is, a set of trinucleotides.
• IfX is a trinucleotide code and w is a sequence of nucleotides, then anX-decomposition
of w is a tuple (x1, . . . , xt) ∈ Xt of trinucleotides from X such that w = x1 · x2 · · ·xt.

We now formally define the notion of circularity of a code.

Definition 2.2. Let X ⊆ B3 be a trinucleotide code.

• Let m be a positive integer and let (x1, . . . , xm) ∈ Xm be an m-tuple of trinucleotides
from X. A circular X-decomposition of the concatenation c := x1 · · ·xm is an X-
decomposition of a circular shift of c.
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• Let k be a non-negative integer. The code X is (>k)-circular if for every m ∈
{1, . . . , k} and each m-tuple (x1, . . . , xm) of trinucleotides from X, the concatena-
tion x1 · · ·xm admits a unique circular X-decomposition. Note that every trinu-
cleotide code is trivially (>0)-circular. The code X is k-circular if X is (>k)-circular
and not (>k + 1)-circular∗.
• The code X is circular if it is (>k)-circular for all k ∈ N.

Remark 2.3. Every trinucleotide code X is (>0)-circular. Further, a trinucleotide code X
is (>1)-circular if and only if X does not contain a word and one of its circular shifts. This
exactly means that X contains at most one word from each conjugacy class and none of the
periodic trinucleotides.

Here is an example to illustrate Definition 2.2.

Example 2.4. The trinucleotide code X = {ATG,CAT,GCC,GGC} is 1-circular. Indeed,
the word w = CATGGC, which is the concatenation of 2 trinucleotides from X, namely CAT
and GGC, admits a second circular X-decomposition: that of its circular 1-shift ATG ·GCC.
On the other hand, the code X is (>1)-circular since it contains no two trinucleotides in the
same conjugacy class and no periodic trinucleotide.

Notions of maximality in a given set of codes are of general and biological interest, and have
been studied, for instance, for the trinucleotide codes that are circular. We pursue this study
in directions pointed at by the recent introduction of the notion of k-circularity of a code.

Definition 2.5. Let C be a family of trinucleotide codes. A trinucleotide code X ∈ C is
maximum if every code in C has size at most |X|. A trinucleotide code X ∈ C maximal if
it is inclusion-wise maximal, meaning that no code in C of size larger than |X| contains X.
Similarly, a trinucleotide code X ∈ C is minimum if every code in C has size at least |X|. A
trinucleotide code X ∈ C minimal if it is inclusion-wise minimal, meaning that no code in C
of size smaller than |X| is contained in X.

The notions formalised in Definition 2.5 always refer to a given family of codes C, which will
always be clear from the context. We see also that a maximum code is necessarily maximal,
but a maximal code need not be maximum — and similarly a minimum code is necessarily
minimal but a minimal code need not be minimum.

Example 2.6. Suppose that C is the family composed of the three following codes:

{ACG}, {ACG,CGA}, {AGT,CGA,GTG}.

Then, in C, the code {AGT,CGA,GTG} is maximum (and hence maximal), and it is min-
imal but not minimum, while the code {ACG} is minimum (and hence minimal). The
code {ACG,CGA} is not minimal (and hence not minimum either), and it is maximal but
not maximum.

We use graph theory to study the circularity of codes. To this end, several useful definitions
and facts are gathered in the next section.

∗We note here a discrepancy with the notation in some earlier works, where “k-circular” was used to mean
what is here written (>k)-circular; we do however need this refined notation in this work.
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3. Graphs associated to trinucleotide codes

A new graph approach for studying circular codes (see Definition 3.1) has been recently
developed [2]. As we work only with trinucleotide codes, we restrict all definitions and results
to our case of study. The interested reader can consult the article cited for the full results.
Let us define the graph† associated to a code.

Definition 3.1. LetX ⊆ B3 be a trinucleotide code. We define a graph G(X) = (V (X), E(X))
with set of vertices V (X) and set of arcs E(X) as follows:

• V (X) :=
⋃

N1N2N3∈X

{N1, N3, N1N2, N2N3}; and

• E(X) := {N1 → N2N3 : N1N2N3 ∈ X} ∪ {N1N2 → N3 : N1N2N3 ∈ X}.

The graph G(X) is the graph associated to X.

Figure 1 illustrates Definition 3.1.
The length of a directed cycle in a graph G is the number of arcs of the cycle. We note that
every arc of G(X) joins a nucleotide and a dinucleotide; in particular the graph G(X) cannot
contain a directed cycle of odd length. Directed cycles in the graph associated to a code play
an important role, as witnessed by the following theorem [3, Theorem 3.3], the statement of
which we specify to the case of trinucleotide codes.

Theorem 3.2. Let X ⊆ B3 be a trinucleotide code and k a non-negative integer. The code X
is k-circular if and only if the minimum of the lengths of the directed cycles in G(X) is 2(k+1),
that is G(X) contains a directed cycle of length 2(k+ 1) and no directed cycle of shorter length.

In view of Theorem 3.2, we are interested in the length of the shortest directed cycles in the
graph associated to a code: this parameter is called the directed girth.

Definition 3.3. If G is a directed graph, then the directed girth of G is defined to be infinite
if G contains no directed cycle, and the smallest number of arcs of G forming a directed cycle
otherwise.

As pointed out above, if X is a trinucleotide code then every arc of G(X) joins a nucleotide
and a dinucleotide. Since B contains exactly four nucleotides, it follows that a cycle in G(X),
if any, must be have length in {2, 4, 6, 8}. Therefore, Theorem 3.2 implies in particular that
there is no trinucleotide k-circular code for k ≥ 4; in other words, a trinucleotide (>4)-circular
code must be circular. Further, G(X) has a cycle of length 2 if and only if X contains two
trinucleotides in a same conjugacy class, or one of the periodic trinucleotides. In this case, X
is 0-circular (2(k + 1) = 2 implies that k = 0). The class of all trinucleotide (>0)-circular
codes is precisely the class of all trinucleotide codes.
On the other hand, there exist 3-circular trinucleotide codes. For instance the code

X5 = {AGC,ATT,CAA,CTG,GCC,GAT, TCA, TGG}

†Since all the graphs we consider are directed graphs, we simply write “graph” instead of “digraph”.
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(d) The graph G(X1).

Figure 1. The graphs associated to the codes X4 = {ACG,CGT,GTA},
X3 = X4 ∪ {TAC}, X2 = X3 ∪ {GGT} and X1 = X2 ∪ {ACA}. Illustrating
also Theorem 3.2, we see that the graph G(X4) has infinite directed girth (i.e.
contains no directed cycle) and hence X4 is circular (which is the same as
(>4)-circular); the graph G(X3) has directed girth 8 = 2 · (3 + 1) and hence X3

is 3-circular; the graph G(X2) has directed girth 6 = 2 · (2 + 1) and hence X2

is 2-circular; and the graph G(X1) has directed girth 4 = 2·(1+1) and hence X1

is 1-circular.

is not (>4)-circular since the sequence of 4 trinucleotides TCAAGCCTGGAT admits two
circular X-decompositions, namely

TCA ·AGC · CTG ·GAT and CAA ·GCC · TGG ·ATT,

but X is (>3)-circular as one can check that no sequence of 3 trinucleotides admits two
circular X-decompositions.
It follows that all non-empty trinucleotide codes over B can be naturally partitioned into 5
classes using the following definition.

Definition 3.4. We define the circularity cir(X) of a non-empty trinucleotide code X to be
the largest integer k ∈ {0, 1, 2, 3, 4} such that X is (>k)-circular.
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For instance, the circularity of the code X5 above is 3 (i.e. cir(X5) = 3), while that of
a trinucleotide circular code would be 4.‡ For sheer convenience (regarding the notion of
minimality), we actually define the circularity of the empty code to be 5, that is, cir(∅) = 5.
In this way, the empty code forms a special class on its own, and we can focus on non-empty
codes.
The notion of k-circularity of a code immediately makes interesting the notions of minimality
formally introduced in Definition 2.5. These notions of minimality are not interesting for circu-
lar codes. Indeed, ifX is circular, then any subset ofX is also circular. This is no longer true for
the circularity of a code. For instance, the trinucleotide code {AAC,ACG,GTA, TAC,CGT}
is 2-circular, while the code obtained by removing CGT , that is {AAC,ACG,GTA, TAC}, is
a circular code, and hence has circularity 4. This remark, coupled to the graph representation,
leads to an approach for determining the sequences that prevents the reading frame retrieval.
This aspect is developed in the companion article [5].

4. Development of algorithms to identify trinucleotide k-circular codes

Due to explosive combinatorics, we have developed specific algorithms for identifying trin-
ucleotide k-circular codes. Algorithms presented in Subsections 4.1 and 4.2 have been
parallelized and implemented using the C language. The algorithm in Subsection 4.3 has been
implemented using Ocaml.

4.1. Algorithms based on directed cycles in graphs. Theorem 3.2 represents a
code as a (directed) graph and links the circularity of the code to the (directed) girth of
the graph. Finding the length of a smallest directed cycle in a directed graph G is not as
straightforward as in the undirected case, and the worst-case time complexity is O(n(n+ e)),
where n is the number of vertices of G and e the number of arcs [4]. This follows from the
fact that for an arbitrary vertex v of G, the length of a shortest directed cycle containing v
can be computed in time O(n+ e) at worse.
As reported earlier, the graph G(X) built from a trinucleotide codeX on the genetic alphabet B
must be bipartite — meaning that it contains no cycle of odd length — and it has a bi-partition
with a part containing (at most) 4 vertices — those representing the four nucleotides in B. In
particular, every directed cycle must contain at least one of these four vertices. In addition,
the number of arcs is linear in the number of vertices, both being linear in the size of the
code. It thus follows from the preceding paragraph that the length of a shortest directed cycle
in G(X) can be computed in time O(n).
Let us give more details about the actual implementation we used. The graphs are built
incrementally. We start from G(X), of which we know the directed girth, and we check the
effect, on the directed girth, of the addition of a particular word to X. Adding this word would
add exactly two arcs, and thus we only need to check the possible directed cycles containing
at least one of these two arcs.

‡We note here that we could have defined the circularity of a trinucleotide circular code to be infinite;
however, since a trinucleotide code that is (>4)-circular must actually be circular, we chose to rather use this
boundary of 4.
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Taking advantage of these facts, we designed an algorithm based on a parallelized stack. We
fix an order on the trinucleotides of B3, and each thread starts with a trinucleotide code of a
small fixed size. The generic step is to check whether the addition of the next word N1N2N3

to the current trinucleotide code X creates a directed cycle of length less than the directed
girth of G(X), and if so then we want to know the length of a shortest such cycle. Such a
directed cycle must contain the arc N1 → N2N3 or the arc N1N2 → N3, which we can clearly
exploit to reduce the number of cases to check. Figure 2 illustrates the situation described
below.

N2N3

N1

N1N2

N3distG(X)(N2N3, N
1)

distG(X)(N2N3 , N1N2)

distG(X)(N3, N
1N2)

distG(X)(N3 , N1)

Figure 2. When adding the word N1N2N3 to the trinucleotide code X, the
associated graph is obtained from G(X) by adding the two arcs N1 → N2N3

and N1N2 → N3. An arrow in the middle of a dotted zigzag path represents a
shortest direct path in G(X) from the source vertex to the destination vertex,
if any. A directed cycle containing the arc N1 → N2N3 must contain either
a directed path from N2N3 to N1 in G(X) (whence the computation of the
distance from N2N3 to N1 in G(X)), or it also contains the second added
arc N1N2 → N3 and then also two directed paths from G(X): one from N2N3

to N1N2 and one from N3 to N1. It then remains to check for a directed cycle
containing the arc N1N2 → N3 but not the arc N1 → N2N3: such a directed
cycle must contain a directed path from N3 to N1N2 in G(X).

Specifically, we proceed by computing four distances between pairs of nodes in G(X). We
first compute the distances from N2N3 to N1, and also from N2N3 to N1N2. The former lets
us know the length of a shortest directed cycle containing N1 → N2N3 and not N1N2 → N3.
The latter will be useful to know the length of a shortest directed cycle containing both new
arcs.
We next compute the distances from N3 to N1N2 and from N3 to N1, from which we can
deduce the length of a shorter directed cycle containing N1N2 → N3 (and possibly N1 → N2N3,
thanks to the distance from N2N3 to N1N2, which was computed before as mentioned in the
previous paragraph).
This test allows us to know the effect of adding a word to X without actually making its
addition, which saves updating operations. The only updating operations are thus made
when addition of the word on the stack is possible, and when we backtrack. In this latter
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case, a positive number of words have to be removed from X, which means removing the
corresponding arcs from the graph G(X) and recalling the value of the directed girth — which
had been stored at the step of the thread where that particular trinucleotide code had been
considered.
Finally, we note that directed graphs are implemented using n adjacency lists, where n is the
number of vertices and each adjacency list is represented by a linked list. When backtracking,
words are removed in the reverse order from which they had been added, and thus we only
have to remove the last element of some of the linked lists to update the graph. When adding
a word to the code, we have to add an element at the end of some of the linked lists.

4.2. Algorithms based on adjacency matrices. To have an independent program
checking the computer results described in Subsection 4.1, we designed a straightforward
approach using matrices derived from G(X) for a code X. An adequate choice of the matrix
used allows for a smooth and elegant implementation.
Specifically, given a code X and its associated graph G(X), we build a zero-one square
matrix MX where the lines, and the columns, are in bijection with the arcs of G(X). The
entryMX(i, j) is 1 if the arc corresponding to j starts at the vertex where the arc corresponding
to i ends. This matrix MX can thus be seen as the adjacency matrix of the line graph G̃(X)
of G(X), defined to have one vertex for each arc of G(X), and an arc from a vertex u to a
vertex v if the corresponding arcs in G(X), in the same order, form a directed path of length 2.
An important observation is that the directed girth of G(X) is the same as that of its line
graph G̃(X).
There are then various options to deduce the sought directed girth from the matrix MX . An
elementary way to check for the directed girth is to sequentially compute increasing powers
of MX : the directed girth of G(X) is the least positive power of MX containing a non-zero
element on the main diagonal. Indeed, for every positive integer `, the entryM `

X(i, j) is exactly
the number of directed walks in G̃(X) of length precisely `. A directed closed walk must
contain a directed cycle, and thus a directed closed walk of smallest length in G(X) is indeed
a shortest directed cycle of G(X), where a directed closed walk in a graph G without parallel
arcs amounts to a sequence v1, . . . , vs of (non-necessarily distinct) vertices such that vi−1 → vi

is an arc in G for each i ∈ {2, . . . , s}.
One can avoid doing matrix multiplications by computing the eigenvalues ofMX . Indeed, G(X)
is acyclic if and only if all eigenvalues of Mx are 0, and if that is not the case then the length
of a shortest directed cycle in G(X) is equal to twice the least integer ` such that the sum of
the `-th power of the eigenvalues of MX is non-zero.
The interest of a matrix representation of the line graph is an efficient and easy-to-implement
way to add a new element to a code, or to remove the latest element added to a code. Indeed,
to add a new word to a trinucleotide code X, it suffices to add two lines and two columns
to MX . To delete the latest element added to X, it suffices to delete the last two lines and
the last two columns of MX . The structure of MX thus makes it particularly suited to a
backtracking approach. Concretely, for computing codes of a given size n, the algorithm
creates a single matrix of size 2n × 2n, but only consider the upper left part of adequate
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size at each given time; that is, the algorithm only deals with the first 2` lines and the first
2` columns when considering a code of size ` during its execution. Thus “deleting” the last
two rows and the last two columns is actually just a single integer subtraction, as we simply
decrease by 2 the integer bounding the number of rows (and columns) that the algorithm
is allowed to consider. “Adding” two lines and two columns to MX , where |X| = `, means
increasing the boundary by 2, and updating the entries in these two lines and two columns.
With the elementary method using matrix powers, only integral values are used. On the other
hand, the eigenvalues of the adjacency matrices can be complex numbers. The computations
are thus made using floating-point numbers, but the problem is numerically stable, and
as a matter of fact we never encountered a single run where the approximation created a
discrepancy with the outcome of the other algorithms. The computation of the eigenvalues is
performed using the library lapack, which uses the library blas.

4.3. Incremental algorithm. The strategy this time is to specify the algorithm from the
structure of graphs representing trinucleotide k-circular codes for some k ∈ {1, 2, 3}. Indeed,
the graph G(X) associated to such a code X must contain a directed cycle of length 2(k + 1).
This implies that the code has size at least k + 1. The starting point is then all possible
trinucleotide codes of size k + 1 that give rise to a graph isomorphic to a directed cycle of
length 2(k + 1). All these possibilities give the number of trinucleotide k-circular codes of
size exactly k + 1, and are stored in a file. Once all trinucleotide codes with circularity k and
size n have been generated and saved, the codes of size n+ 1 are generated by trying, for each
saved code of size n, to add one extra trinucleotide to the code. The circularity of the new
code is checked using the graph representation. If the circularity is still k, then we have found
a trinucleotide k-circular code of size n+ 1. Such a code is saved and the process goes on.
We note that such a procedure might generate several times the same trinucleotide code,
and thus once all codes of a given size and circularity have been generated, one needs to
suppress those generated more than once. Another drawback is the time spent accessing files,
which becomes enormous. (It would be useful here to design a specific lossless compression
format, so as to minimise the time spent reading the file.) This method was implemented and
executed for all sizes when k ∈ {2, 3} and most sizes (but not all) when k = 1. It confirmed
the outputs obtained by the other methods described in Subsections 4.1 and 4.2.

5. Results

5.1. A general formula to count the trinucleotide 0-circular codes according to
various partitions. We here establish a general formula to count the number of trinucleotide
0-circular codes according to different partitions of the trinucleotides: for example, the partition
can be given by the conjugacy classes, the self-complementarity or the mirror relation.
The following statement is straightforward.

Proposition 5.1. Let E be a set of trinucleotides partitioned into t classes each of size 3. For
each positive integer n, the number F61(n, t) of subsets E′ of E of size n such that |E′∩C| ≤ 1
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for each class C is

F61(n, t) =
(
t

n

)
· 3n.(5.1)

Proposition 5.1 directly gives the number F>2(n, t) of subsets E′ of size n such that |E′∩C| ≥ 2
for at least one class C, as indicated below. We however provide a second formula, which is
combinatorially equivalent but is more amenable to further generalisations to other partition
types (e.g. the mirror relation).

Proposition 5.2. Let E be a set of trinucleotides partitioned into t classes each of size 3. For
each positive integer n, the number F>2(n, t) of subsets E′ of E of size n such that |E′∩C| ≥ 2
for at least one class C is

F>2(n, t) =
(

3t
n

)
−
(
t

n

)
· 3n(5.2)

=
min{t,n−1}∑

c=dn/3e

(
t

c

)
c−1∑
p=0

(
c

p

)(
c− p

3c− n− 2p

)
· 33c−n−p.(5.3)

Proof. The number of subsets of E of size n is
(3t

n

)
, and hence 5.2 follows from Proposi-

tion 5.1.
To establish (5.3), consider a subset E′ of E of size n. Let c be the number of classes C
intersected by E′. For each i ∈ {1, 2, 3}, let pi be the number of classes C such that |E′∩C| = i.
It follows that p1 + p2 + p3 = c and p1 + 2p2 + 3p3 = n. In particular, p2 = 3c − n − 2p1

and p3 = c− p1 − p2 = n+ p1 − 2c.
The number of possibilities for E′ can thus be written

(5.4)
t∑

c=1

(
t

c

)
c∑

p1=0

(
c

p1

)(
c− p1

3c− n− 2p1

)
· 33c−n−p1 .

The subset E′ satisfies |E′ ∩ C| ≥ 2 for at least one class C if and only if p < c. In addition,
the range of c can be reduced: indeed, c cannot be less than dn/3e or greater than n − 1
(coherently, in such cases the rightmost binomial coefficient in (5.4) is 0). We thus deduce
that

(5.5) F>2(n) =
min{t,n−1}∑

c=dn/3e

(
t

c

)
c−1∑
p=0

(
c

p

)(
c− p

3c− n− 2p

)
· 33c−n−p,

which concludes the proof. �

Propositions 5.1 and 5.2 will be applied to the general case in Subsection 5.2, and to the
self-complementary case in Subsection 5.5.

5.2. Growth function of the circularity of trinucleotide codes. As reported ear-
lier, the circularity of a trinucleotide code is between 0 and 4, and every code is (>0)-circular,
that is, has circularity at least 0. The next observation follows directly by definition.
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Observation 5.3. The number N>0(n) of trinucleotide (>0)-circular codes X with size n,
for n ∈ {1, . . . , 64}, is

N>0(n) =
(

64
n

)
.

A trinucleotide code is (>1)-circular if and only if it contains no periodic trinucleotide and at
most one trinucleotide from each conjugacy class. Proposition 5.1 applied to the partition
of E = B3 \ P into the t = 20 conjugacy classes yields the following observation.

Observation 5.4. The number N>1(n) of trinucleotide (>1)-circular codes X with size n,
for n ∈ {1, . . . , 20}, i.e. cir(X) ∈ {1, 2, 3, 4}, is

N>1(n) = F61(n, 20) =
(

20
n

)
· 3n.

The number N0(n) of trinucleotide 0-circular codes of size n ∈ {1, . . . , 20} can be expressed
in various ways.

Proposition 5.5. The number N0(n) of trinucleotide 0-circular codes of size n ∈ {1, . . . , 20}
is precisely

N0(n) =
(

64
n

)
−
(

20
n

)
· 3n(5.6)

=
(

60
n− 4

)
+ 4

(
60

n− 3

)
+ 6

(
60

n− 2

)
+ 4

(
60

n− 1

)
+
(

60
n

)
−
(

20
n

)
· 3n(5.7)

=
(

60
n− 4

)
+ 4

(
60

n− 3

)
+ 6

(
60

n− 2

)
+ 4

(
60

n− 1

)

+
min{20,n−1}∑

c=dn/3e

(
20
c

)
c−1∑
p=0

(
c

p

)(
c− p

3c− n− 2p

)
· 33c−n−p.(5.8)

Proof. Proof of (5.6). We have N0(n) = N>0(n)−N>1(n), and hence (5.6) follows from
Observations 5.3 and 5.4.

Proof of (5.7). A trinucleotide 0-circular code must contain a trinucleotide in P, or two
trinucleotides belonging to the same conjugation class (two trinucleotides that are circular
shifts of one another). Thus, Proposition 5.1 applied to E = B3\P with t = 20 implies that the
number of trinucleotide 0-circular codes of size n that do not contain a periodic trinucleotide
is
(60

n

)
− F61(n, 20). On the other hand, every trinucleotide code (of size n) containing (at

least) one of the four periodic trinucleotides is necessarily 0-circular. Consequently, their
number P (n) is

( 60
n−4

)
+ 4

( 60
n−3

)
+ 6

( 60
n−2

)
+ 4

( 60
n−1

)
and hence (5.7) follows.

Proof of (5.8). This follows from (5.3) of Proposition 5.2 applied to E = B3 \ P with t = 20
and the expression for P (n) written in the proof of (5.7). �

We note that the size of a trinucleotide 0-circular code can be as large as 64. The code of
size 64 is precisely the genetic code, which thus has circularity 0.
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We present the number of all trinucleotide k-circular codes of any given size in Table 1,
where we only omitted the trinucleotide codes of size larger than 20, which necessarily have
circularity 0.
Observations 5.3 and 5.4 and Proposition 5.5 permit a partial verification of the numbers in
Table 1, obtained by computer calculus. The total number of trinucleotide codes on the line
corresponding to |X| = n is N>0(n), which is given by Observation 5.3. Next, the sum of the
entries on this line and a column corresponding to cir(X) ∈ {1, 2, 3, 4} is N>1(n), which is
given by Observation 5.4. Last, the entry on the same line and the column corresponding
to cir(X) = 0 is equal to N0(n), which is given by Proposition 5.5.

Table 1. Growth function of the trinucleotide k-circular codes X with cardi-
nality |X| between 1 and 20 and circularity k between 0 and 4.

|X| cir(X)

0 1 2 3 4 Total

1 4 0 0 0 60 64

2 306 6 0 0 1704 2016

3 10884 348 0 0 30432 41664

4 242931 10275 0 6 382164 635376

5 3857040 198084 984 192 3568212 7624512

6 46718328 2703072 42264 3192 25507512 74974368

7 451679952 27092916 766440 37104 141639780 621216192

8 3599676198 203850216 7772184 298668 614568102 4426165368

9 24234627832 1168509648 49134288 1570536 2086742208 27540584512

10 140563557772 5157137040 204575712 5298048 5542646244 151473214816

11 713842171704 17660170500 578824896 11553600 11503061124 743595781824

12 3217269080286 47179720798 1133758356 16476492 18615667124 3284214703056

13 13013266893264 98620253796 1552755192 15424416 23403485556 13136858812224

14 47670312080376 161186859852 1491008256 9375408 22700634924 47855699958816

15 159296534408592 204675268392 999089112 3573552 16787523072 159518999862720

16 488318375716335 198820855389 460696716 788820 9279022320 488526937079580

17 1379222955497700 143368816140 142169112 83520 3708717048 1379370175283520

18 3601615181125170 72569947818 27843072 2280 1012099740 3601688791018080

19 8719854880393380 23073397716 3104832 0 168726792 8719878125622720

20 19619722295866719 3473671209 148752 0 12964440 19619725782651120

Total 34032813813604773 977188463215 6651690168 64485834 115606988558 34033913325232548

The notion of k-circularity allows for meaningful notions of minimality. The first one deals
with the smallest possible size of a trinucleotide k-circular code, as presented next.
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5.3. Sizes of minimum trinucleotide k-circular codes. While the minimum size of
a trinucleotide code of circularity 0 or 4 is clearly 1, the situation is more complex when the
circularity is 1, 2 or 3, as read from Tables 1 and 2.

Table 2. Minimum size of a trinucleotide code with circularity k between 0 and 4.

Circularity cir(X) of X 0 1 2 3 4
Minimum size of X 1 2 5 4 1
Number of codes of minimum size 4 6 984 6 60

Observation 5.6. The 6 minimum trinucleotide 1-circular codes of size 2, follow the struc-
ture {αβα, βαβ} for α and β two different nucleotides in B. There are precisely

(4
2
)

= 6
choices for the set {α, β}. All these 6 codes are different but equivalent (in the sense that any
of them is obtained from either of them by a suitable permutation of the nucleotides), and in
particular all generate the same graph: a directed cycle of length 4.

For the reader’s convenience, we now list the 6 minimum trinucleotide 1-circular codes and
the 6 minimum trinucleotide 3-circular codes.

List 5.7 (The 6 minimum trinucleotide 1-circular codes of size 2).

{ACA,CAC}, {AGA,GAG}, {ATA, TAT},

{CGC,GCG}, {CTC, TCT}, {GTG, TGT}.

List 5.8 (The 6 minimum trinucleotide 3-circular codes of size 4).

{ACG,CGT,GTA, TAC}, {ACT,CTG,GAC, TGA},

{AGC,CTA,GCT, TAG}, {AGT,CAG,GTC, TCA},

{ATC,CGA,GAT, TCG}, {ATG,CAT,GCA, TGC}.

5.4. Growth function of minimal trinucleotide k-circular codes. We now turn
to the notion of inclusion-wise minimality of a trinucleotide code with a given circularity.

Definition 5.9. For each k ∈ {1, 2, 3}, a trinucleotide k-circular code X is minimal if each
code X ′ strictly contained in X is (>k + 1)-circular.

In other words, Definition 5.9 states that a trinucleotide k-circular code X is minimal if and
only if for each word w ∈ X, the code X \ {w} is (>k + 1)-circular.
Table 3 presents the number of trinucleotide k-circular codes that are minimal in the sense
of Definition 5.9, for all relevant values of k, i.e. k ∈ {1, 2, 3}, and all possible code sizes. A
striking fact occurs: one would have thought that for fixed k, the growth function seen as a
function of the code size n, would first increase with n until a certain point, from which the
function would be always 0. However, trinucleotide 3-circular codes show that this is not the
case, since there are no minimal such codes of size 5, and yet there do exist minimal such
codes of size 4 and of size 6.
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Table 3. Growth function of the minimal trinucleotide k-circular codes X
with cardinality |X| between 1 and 20 and circularity k between 1 and 3.

|X| cir(X)

1 2 3 Total

1 0 0 0 0

2 6 0 0 6

3 24 0 0 24

4 840 0 6 846

5 0 984 0 984

6 0 6600 636 7236

7 0 0 2976 2976

8 0 0 4248 4248

≥ 9 0 0 0 0

Total 870 7584 7866 16320

Example 5.10. The trinucleotide code {ACG,CAC,GCA} is 1-circular since it contains
the directed cycle C → AC → G → CA → C and no shorter directed cycle. Yet this code
contains none of the trinucleotide 1-circular of size less than 3 (see List 5.7), and therefore it
is minimal.

5.5. Growth function of self-complementary trinucleotide k-circular codes.
The biological notion of complementarity leads to study families of self-complementary
trinucleotide codes.

Definition 5.11. The complementary nucleotide N of a nucleotide N ∈ B is given by A := T ,
T := A, C := G and G := C. A trinucleotide code Y ⊆ B3 is self-complementary if for every
trinucleotide N1N2N3 in Y , the complementary trinucleotide N1N2N3 := ĎN3 ĎN2 ĎN1 belongs
to Y , that is, if

Y = Y :=
{

ĎN3 ĎN2 ĎN1 : N1N2N3 ∈ Y
}
.

Remark 5.12. If w ∈ B3 is a trinucleotide, then the complementary trinucleotide of w is w
itself — in other words, the complementary operation is an involution. The trinucleotide
code Y = {ACT,AGT,CCG,CGG} is self-complementary, as ACT = AGT and CCG =
CGG.

Remark 5.13. Every self-complementary trinucleotide code has even size, because no trinu-
cleotide is its own complementary trinucleotide. This property does not hold anymore for
codes with words of even length, e.g. dinucleotide codes and tetranucleotide codes.

The next observation follows directly by definition.
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Observation 5.14. The number N sc
>0(m) of self-complementary trinucleotide (>0)-circular

codes Y with size 2m, for m ∈ {1, . . . , 32}, is

N sc
>0(m) =

(
32
m

)
.

A self-complementary trinucleotide is (>1)-circular if and only if it contains no periodic
trinucleotide P and at most one trinucleotide from each conjugacy class. The 60 trinucleotides
not in P are partitioned into 20 conjugacy classes of size 3. Note that the complementary
trinucleotide of a trinucleotide w cannot be a circular shift of w. Further, the circular shifts of w
are the complementary trinucleotides of the circular shifts of w. More precisely, for j ∈ {1, 2},
the circular j-shift of w is the complementary of trinucleotide of the (3− j)-circular shift of w.
As a result, the set C of the 20 conjugacy classes can be partitioned into 2 subsets C1 and C2 of
size 10, each subset being formed of the conjugacy classes of the complementary trinucleotides
of the trinucleotides in the other subset. This means that any self-complementary trinucleotide
code that does not contain a periodic trinucleotide is entirely determined by its intersections
with the 10 conjugacy classes in C1. Thus, Proposition 5.1 with t = 10 leads to the following
statement.

Observation 5.15. The number N sc
>1(m) of self-complementary trinucleotide (>1)-circular

codes Y with size 2m, for m ∈ {1, . . . , 10}, i.e. cir(Y ) ∈ {1, 2, 3, 4}, is

N sc
>1(m) = F61(m, 10) =

(
10
m

)
· 3m.

The number N sc
0 (m) of self-complementary trinucleotide 0-circular codes of size 2m ∈

{2, . . . , 20} can be expressed in various ways.

Proposition 5.16. The number N sc
0 (m) of self-complementary trinucleotide 0-circular codes

of size 2m, where m ∈ {1, . . . , 10}, is

N sc
0 (m) =

(
32
m

)
−
(

10
m

)
· 3m

(5.9)

=
(

30
m− 2

)
+ 2

(
30

m− 1

)
+
(

30
m

)
−
(

10
m

)
· 3m(5.10)

=
(

31
m− 1

)
+
(

30
m− 1

)
+

min{10,m−1}∑
c=dm/3e

(
10
c

)
c−1∑
p=0

(
c

p

)(
c− p

3c−m− 2p

)
· 33c−m−p.(5.11)

Proof. Proof of (5.9). We have N sc
0 (m) = N sc

>0(m)−N sc
>1(m), and hence (5.9) follows

from Observations 5.14 and 5.15.

Proof of (5.10). Proposition 5.1 applied to the conjugacy classes in C1 with t = 10 implies that
the number of self-complementary trinucleotide 0-circular codes of size 2m that do not contain
a periodic trinucleotide is

(30
m

)
−F61(m, 10). In addition, the periodic trinucleotides contained

in a self-complementary trinucleotide code are completely determined by its intersection
with {AAA,CCC}. Self-complementary trinucleotide codes containing a periodic trinucleotide
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(i.e. with a non-empty intersection with the set P of periodic trinucleotides) are necessarily
0-circular, and hence their number P sc(m) is

( 30
m−2

)
+ 2

( 30
m−1

)
. Thus, (5.10) follows.

Proof of (5.11). This follows from (5.3) in Proposition 5.2 applied to the conjugacy classes
in C1 with t = 10 and the expression for P sc(m) written in the proof of 5.10. �

Some of the codes counted contain a whole conjugacy class. To avoid counting such cases, one
can proceed as follows. First, each periodic trinucleotide in P forms its whole conjugacy class,
so the codes we count should not contain an element in P . Second, at least one conjugacy class
should contain exactly two trinucleotides from the trinucleotide code, to ensure circularity 0.
We thus conclude the following.

Observation 5.17. For each m ∈ {1, . . . , 10}, the number Ñ sc
0 (m) of self-complementary

trinucleotide 0-circular codes of size 2m that do no contain a whole conjugacy class is

Ñ sc
0 (m) =

bm/2c∑
d=1

(
10
d

)(
10− d
m− 2d

)
· 3m−d.

Example 5.18. By (5.5) and Observation 5.17 applied with m = 10, we know that among
the 64, 453, 191 self-complementary trinucleotide 0-circular codes of size 20, there are ex-
actly 29, 985, 966 of them that contain no periodic trinucleotide:

29, 985, 966 = N sc
0 (10)− P sc(10) = 64, 453, 191− 34, 467, 225.

By Observation 5.17, the number of self-complementary trinucleotide 0-circular codes of size 20
that do not contain a whole conjugacy class is

Ñ sc
0 (10) = 21, 581, 316.

It follows that exactly 8, 404, 650 self-complementary trinucleotide 0-circular codes of size 20
contain a whole conjugacy class but no periodic trinucleotide:

8, 404, 650 = 29, 985, 966− Ñ sc
0 (10) = 29, 985, 966− 21, 581, 316.

Table 4 gives the growth function of the self-complementary trinucleotide k-circular codes Y
with even cardinality |Y | between 2 and 20 and circularity k between 0 and 4.
Observations 5.14 and 5.15 and Proposition 5.16 permit a partial verification of the numbers
in Table 4, obtained by computer calculus. The total number of trinucleotide codes on the line
corresponding to |Y | = 2m is N sc

>0(m), which is given by Observation 5.14. Next, the sum of
the entries on this line and a column corresponding to cir(Y ) ∈ {1, 2, 3, 4} is N sc

>1(m), which
is given by Observation 5.15. Last, the entry on the same line and the column corresponding
to cir(Y ) = 0 is equal to N sc

0 (m), which is given by Proposition 5.16.
There are exactly 2 self-complementary trinucleotide 0-circular codes of size 2, which are
thus minimum (see List 5.19). The situation is similar for self-complementary trinucleotide
1-circular codes (see List 5.20),

List 5.19 (The 2 minimum self-complementary trinucleotide 0-circular codes of size 2).

{AAA, TTT}, {CCC,GGG}.
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Table 4. Growth function of the self-complementary trinucleotide k-circular
codes Y with even cardinality |Y | between 2 and 20 and circularity k between 0
and 4.

|Y | cir(Y )

0 1 2 3 4 Total

2 2 2 0 0 28 32
4 91 67 0 4 334 496
6 1720 992 8 64 2176 4960
8 18950 8180 160 376 8294 35960
10 140140 40344 888 904 19100 201376
12 753102 123014 1844 968 27264 906192
14 3103416 235948 1704 464 24324 3365856
16 10223055 281145 780 80 13240 10518300
18 27851970 192622 176 0 4032 28048800
20 64453191 58505 16 0 528 64512240
Total 106545637 940819 5576 2860 99320 107594212

List 5.20 (The 2 minimum self-complementary trinucleotide 1-circular codes of size 2).

{ATA, TAT}, {CGC,GCG}.

No self-complementary trinucleotide code of size less than 4 is 3-circular and there are
exactly 4 self-complementary trinucleotides 3-circular codes of size 4, the list of which is found
in List 5.21.

List 5.21 (The 4 minimum self-complementary trinucleotide 3-circular codes of size 4).

{ACG,CGT,GTA, TAC}, {AGC,GCT,CTA, TAG},

{ATC,GAT,CGA, TCG}, {ATG,CAT,GCA, TGC}.

No self-complementary trinucleotide code of size less than 6 is 2-circular and there are
exactly 8 self-complementary trinucleotides 2-circular codes of size 6, the list of which is found
in List 5.24.

Observation 5.22. The 8 minimum self-complementary trinucleotide 2-circular codes of
size 6, follow the structure

{ααβ, sβsαsα, αβ sβ, β sβsα, sααβ, sβsαα}

for α and β two different and non-complementary nucleotides in B. Fixing for instance α = A

and β = C, each of the 8 permutations that preserves the self-complementarity of the code can
be applied, yielding all the 8 different minimum self-complementarity trinucleotide 2-circular
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Figure 3. The unique graph generated by the 8 minimum self-complementary
trinucleotide 2-circular codes of size 6. The white vertices correspond to
those associated to nucleotides while the black vertices are those associated to
dinucleotides.

codes of size 6. More precisely, these are the permutations swapping either (possibly both) pairs
of complementary nucleotides, the two possible permutations swapping A with one of C,G,
and T with the other one, the permutation (A,C, T,G) and its inverse for a total of seven
codes in addition to the first one (see List 5.23). Consequently, the graphs associated to these 8
codes are all pairwise isomorphic: the unique graph obtained is depicted in Figure 3.

List 5.23 (The 8 permutations that preserve the self-complementary property of trinucleotide
codes).

(A, C, G, T ), (T, C, G, A),

(A, G, C, T ), (T, G, C, A),

(C, A, T, G), (G, T, A, C),

(C, T, A, G), (G, A, T, C).

For the reader’s convenience, we explicitly list the 8 minimum self-complementary trinucleotide
2-circular codes of size 6.

List 5.24 (The 8 minimum self-complementary trinucleotide 2-circular codes of size 6).

{AAC,GTT,ACG,CGT,GTA, TAC}, {AAG,CTT,AGC,GCT,CTA, TAG},

{ACC,GGT,ACG,CGT,GTA, TAC}, {AGC,GCT,AGG,CCT,CTA, TAG},

{ATC,GAT,CGA, TCG,GAA, TTC}, {ATC,GAT,CGA, TCG,GGA, TCC},

{ATG,CAT,CAA, TTG,GCA, TGC}, {ATG,CAT,CCA, TGG,GCA, TGC}.

5.6. Growth function of minimal self-complementary trinucleotide k-circular
codes. We now turn to the notion of inclusion-wise minimality of a self-complementary
trinucleotide code with a given circularity.

Definition 5.25. For each k ∈ {1, 2, 3}, a self-complementary trinucleotide k-circular code Y
is minimal if each code Y ′ obtained from Y by removing both a trinucleotide and its
complementary trinucleotide is (>k + 1)-circular.
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In other words, Definition 5.25 states that a self-complementary trinucleotide k-circular code Y
is minimal if and only if for each word w ∈ Y , the code Y \ {w,w} is (>k + 1)-circular.
Table 5 presents the number of self-complementary trinucleotide k-circular codes that are
minimal in the sense of Definition 5.25, for all relevant values of k, i.e. k ∈ {1, 2, 3}, and all
possible code sizes.

Table 5. Growth function of the minimal self-complementary trinucleotide
k-circular codes Y with even cardinality |Y | between 1 and 20 and circularity k
between 1 and 3.

|Y | cir(Y )

1 2 3 Total

2 2 0 0 2

4 14 0 4 18

6 64 8 8 80

8 117 56 56 229

10 0 64 0 64

≥ 12 0 0 0 0

Total 197 128 68 393

Example 5.26. The trinucleotide code Y1 := {ACA, TGT,CAG,CTG,GTA, TAC} is self-
complementary and also 3-circular since it contains exactly two directed cycles, both of
length 8. Their intersection is

A→ CA→ G→ TA→ C → TG→ T.

This intersection contains an arc from every pair of complementary trinucleotides of Y1, which
is enough to prove that Y1 is one of the 8 minimal self-complementary trinucleotide 3-circular
codes, the list of which is found in List 5.27.

List 5.27 (The 8 minimal self-complementary trinucleotide 3-circular codes of size 6).

{ACA, TGT,ATG,CAT,GAC,GTC}, {ACA, TGT,CAG,CTG,GTA, TAC},

{ACG,CGT,CAC,GTG, TCA, TGA}, {ACT,AGT,CAC,GTG,GCA, TGC},

{ACT,AGT,CGA, TCG,CTC,GAG}, {AGA, TCT,ATC,GAT,CAG,CTG},

{AGA, TCT,CTA, TAG,GAC,GTC}, {AGC,GCT,CTC,GAG, TCA, TGA}.

List 5.28 (The 14 minimal self-complementary trinucleotide 1-circular codes of size 4).

{AAT,ATT,CGA, TCG}, {AAT,ATT,GCA, TGC}, {ACA, TGT,CAC,GTG},

{ACG,CGT,GCA, TGC}, {ACG,CGT, TAA, TTA}, {AGA, TCT,CTC,GAG},

{AGC,GCT,CGA, TCG}, {AGC,GCT, TAA, TTA}, {ATC,GAT,CCG,CGG},

{ATC,GAT,CTA, TAG}, {ATG,CAT,GCC,GGC}, {ATG,CAT,GTA, TAC},

{CCG,CGG,GTA, TAC}, {CTA, TAG,GCC,GGC}.
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5.7. Growth function of trinucleotide (k, k, k)-circular codes. Using the notion of
circular shifts, a trinucleotide code naturally gives rise to two other codes: the set of j-circular
shifts of the trinucleotides in X for j ∈ {1, 2}.

Definition 5.29. If X ⊆ B3 is a trinucleotide code, then for j ∈ {1, 2} we define Xj to be
the code composed of the j-circular shifts of all trinucleotides in X, that is

X1 := {N2N3N1 : N1N2N3 ∈ X} , and

X2 := {N3N1N2 : N1N2N3 ∈ X} .

Given a trinucleotide code of circularity k, we are interested in the circularity of the two
circular shifts of X, namely cir(X1) and cir(X2).

Definition 5.30. We define the shifted circularity of a trinucleotide code X to be the
triplet (cir(X), cir(X1), cir(X2)), and we write that X is (cir(X), cir(X1), cir(X2))-circular.

Example 5.31. The C3 self-complementary trinucleotide code (X) of maximal size 20 identified
in genes [1] has shifted circularity (4, 4, 4), since it is C3.

Example 5.32. Let X be the trinucleotide code {ATA,GTA, TAC, TAT}, which is 1-circular.
Then X1 = {TAA, TAG,ACT,ATT} and X2 = {AAT,AGT,CTA, TTA}. We see that
both X1 and X2 are circular, and hence the shifted circularity of X is (1, 4, 4). Note that the
shifted circularity of X1 is (4, 4, 1) and that of X2 is (4, 1, 4).

Definition 5.30 broadly generalises the notion of C3 for a trinucleotide circular code. We are
particularly interested in the generalisation formed by trinucleotide (k, k, k)-circular codes
for k ∈ {1, . . . , 4}.

Remark 5.33. A trinucleotide code X is 0-circular if and only if it contains a trinucleotide w
and one of its circular shifts (which is w itself if w is one of the periodic trinucleotides). It
follows that if cir(X) = 0, then cir(X1) = 0 = cir(X2), and therefore every trinucleotide
0-circular code has shifted circularity (0, 0, 0). This fact of course does not generalise to larger
values of cir(X).

Table 6 gives the growth function of trinucleotide (k, k, k)-codes X with cardinality |X|
between 1 and 20 and k between 1 and 4.
The peculiarity of the case of trinucleotide (3, 3, 3)-circular codes begs for study. It is much
striking that such codes exist only for size 10, as shown in Table 6. As it turns out, these 96
codes all have a very particular structure. Although we do not have at the moment a complete
mathematical argument to establish that no other code is (3, 3, 3)-circular, we are currently
working on establishing this fact.
An analysis of these 96 codes shows that they can be divided into four families of different
codes: inside each family, any code is obtained from any other code by a suitable permutation
of the nucleotides. In addition, inside each family no two nucleotides are “symmetric”, in the
sense that all four nucleotides play different roles. Consequently, each family has size 4! = 24.
We may thus define each family by giving the general shape of the codes it contains, as follows.
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Table 6. Growth function of trinucleotide (k, k, k)-codes X with cardinal-
ity |X| between 1 and 20 and k between 1 and 4.

|X| shifted circularity of X

(1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) Total

1 0 0 0 60 60
2 0 0 0 1692 1692
3 0 0 0 29736 29736
4 0 0 0 362340 362340
5 288 0 0 3208140 3208428
6 24624 72 0 20979360 21004056
7 819696 2184 0 101278980 102100860
8 15046488 32472 0 358986546 374065506
9 173052684 293688 0 934952112 1108298484
10 1321102596 1403784 96 1810992816 3133499292
11 6905470284 3193416 0 2659948812 9568612512
12 25274438019 3529416 0 3016531848 28294499283
13 66114692304 2117352 0 2671142076 68787951732
14 125886576816 800640 0 1851870852 127739248308
15 176584791216 224832 0 998646600 177583662648
16 182565809382 55620 0 411632826 182977497828
17 136685642724 12312 0 125522712 136811177748
18 70713412164 1944 0 26719056 70740133164
19 22760177964 144 0 3548208 22763726316
20 3449390967 0 0 221544 3449612511
Total 818450448216 11667876 96 14996576316 833458692504

Observation 5.34. If X is one of the 96 trinucleotide (3, 3, 3)-circular codes of size 10, then
there exists a bijection π : {α, β, γ, δ} → B such that X = π(F ) where F is one of the following
four codes:

(1) {ααβ, αβγ, αγδ, βδβ, βδγ, γαγ, γββ, γγδ, δαα, δβα};
(2) {ααβ, αβδ, αγγ, βαγ, ββδ, βγβ, γδβ, γδγ, δαα, δγα};
(3) {ααβ, αγβ, βδα, βδδ, γαδ, γβγ, γγα, δαα, δβγ, δγδ};
(4) {ααβ, αδβ, βγα, βγγ, γαγ, γβδ, γδα, δαα, δβδ, δδγ}.

Furthermore, the graph associated to any of these 96 codes is isomorphic to one of the graph
depicted in Figure 4.
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The last part of Observation 5.34 is interesting: it tells us that, despite having non-equivalent
codes among the 96 ones, they all share the same associated graph. It thus seems that the
graph is able to capture intrinsic properties related to circularity while smoothing out some of
the differences irrelevant to that matter.

Figure 4. The two graphs generated by the 96 trinucleotide (3, 3, 3)-circular
codes of size 10. The white vertices correspond to those associated to nucleotides
while the black vertices are those associated to dinucleotides.

5.8. Growth function of self-complementary trinucleotide (k, k, k)-circular codes.

Definition 5.35. A trinucleotide code Y is self-complementary (k, k, k)-circular if Y is both
self-complementary and (k, k, k)-circular.

We stress the important fact that, contrary to the general setting, Definition 5.35 is not sym-
metric: indeed, neither the 1-circular shift Y1 nor the 2-circular shift Y2 of a self-complementary
code Y is self-complementary itself (unless Y ⊆ P). Indeed, Y1 and Y2 are complementary of
each other.

Example 5.36. Let Y be the trinucleotide code {ATC,GAT,CCG,CGG,GCA, TGC},
which is self-complementary and 1-circular. First, the 1-circular shift Y1 of Y is the trinu-
cleotide code {TCA,ATG,CGC,GGC,CAG,GCT}, which is also 1-circular but is not self-
complementary. Second, the 2-circular shift Y2 of Y is {CAT, TGA,GCC,GCG,AGC,CTG},
which is also 1-circular (and not self-complementary). Hence Y is a self-complementary
trinucleotide (1, 1, 1)-circular code.

Table 7 gives the growth function of self-complementary trinucleotide (k, k, k)-circular codes Y
with even cardinality |Y | between 2 and 20 and k between 1 and 4.
As one sees in Table 7, there is no self-complementary trinucleotide (3, 3, 3)-circular code. In
addition, all self-complementary trinucleotides (2, 2, 2)-circular codes have size at least 10 and
at most 16. There are exactly 4 self-complementary trinucleotides 2-circular codes of size 16
(see List 5.37).
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Table 7. Growth function of self-complementary trinucleotide (k, k, k)-circular
codes Y with even cardinality |Y | between 2 and 20 and k between 1 and 4.

|Y | shifted circularity of Y

(1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) Total

2 0 0 0 28 28
4 0 0 0 330 330
6 68 0 0 2064 2132
8 1764 0 0 7102 8866
10 17408 96 0 13956 31460
12 80915 184 0 16764 97863
14 195388 56 0 12876 208320
16 259624 4 0 6252 265880
18 186296 0 0 1752 188048
20 57681 0 0 216 57897
Total 799144 340 0 61340 860824

List 5.37 (The 4 minimum self-complementary trinucleotide (2, 2, 2)-circular codes of size 16).

{AAC,GTT,AAG,CTT,AAT,ATT,CAC,GTG,CAG,CTG,CTC,GAG,GAC,GTC, TCA, TGA},

{ACA, TGT,ACC,GGT,ACT,AGT,AGA, TCT,CAG,CTG,GCC,GGC,GGA, TCC, TCA, TGA},

{ACA, TGT,ACT,AGT,AGA, TCT,AGG,CCT,CCA, TGG,CCG,CGG,GAC,GTC, TCA, TGA},

{ACT,AGT,CAA, TTG,CAC,GTG,CAG,CTG,CTC,GAG,GAA, TTC,GAC,GTC, TAA, TTA}.

6. Conclusion

We developed three classes of algorithms to compute the trinucleotide k-circular codes based
on: (i) the smallest directed cycles (directed girth) in graphs; (ii) the eigenvalues of matrices;
and (iii) the files that incrementally save partial results. They allowed us to determine quickly
and safely the growth functions of the trinucleotide k-circular codes in the general case and
in five important particular cases: minimum, minimal, self-complementary, (k, k, k)-circular
and self-complementary (k, k, k)-circular. The general shape and the graph structure of some
codes are described, in particular for the 96 trinucleotide (3, 3, 3)-circular codes of size 10.
In all their generality, the algorithms developed here allow us to study tetranucleotide codes
(i.e. each word of the code is composed of 4 nucleotides). We already obtained partial
results with the growth function of self-complementary tetranucleotide circular codes, most
notably, the maximum number and its size. There are precisely 3, 089, 394, 792 maximum
self-complementary tetranucleotide circular codes of size 60.
Biological analyses inspired from this work are presented in the companion article [5].
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