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We propose a new approach to study protein coding and non-coding regions in
DNA sequences, by making use of two complementary statistical methods. The
principal component analysis (PCA) is a graphical method to represent DNA
sequences which are characterized by some quantitative parameters: it is a help to
the intuition. The discriminating analysis (DA) is a quantitative method which
permits to classify the DNA sequences. It leads to an evaluation of the first method
and to a decision. The value of this approach has been confirmed since we also
have found some results which had been described recently in the literature. Further-
more, this general methodology has permitted us to show the existence of parameters
which identify the nucleic acid sequence functional domains, without having to
make use of the properties of the genetic code.

1. Introduction

Several methods have been developed in order to distinguish between protein coding
(PCS) and non-coding (NCS) sequences. They can be classified into two categories:

(i) Type 1—methods. These permit one to locate the PCS and NCS exactly. They
make use of similarity features which lead to the comparison of small number of
sequences, such as: initiation and termination signals, ribosome binding sites,
intron-exon junctions, homologies and symmetries of sequences, etc.

(ii) Type 2—methods. These lead one to show universal differences between the
PCS and the NCS. They make use of the probabilities and of the statistics in order
to treat large samples of sequences which are characterized by quantitative para-
meters, such as the percentage of bases. Of the type-2 methods, several probabilistic
and statistical ones have been published, which permit processing of the information
stored in each DNA sequence, with the four-base series. Staden & McLachlan (1982)
compared, by testing the similarity of the codon usage strategy (Grantham et al.,
1981) a known PCS and the open reading frame. Shepherd (1981) determined, by
correlation testing, which frame differs the least from a supposed original PCS,
where the codons should have the form RNY (R =purine, Y = pyrimidine, N =
purine or pyrimidine). Smith et al., (1983) characterized the coding and non-coding
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domains of vertebrate and non-vertebrate sequences, with measures of strand-pairing
asymmetry, diad and triad nearest neighbour chi-square values, and cytosine-
guanine suppression percentages. Tramontano et al. (1984) used two independent
methods in order to evaluate the protein coding information content in different
classes of complementary DNA strands: one is looking at the reading frame length
distribution, based on the search for specific initiation and termination codons; the
other is the testcode analysis developed by Fickett (1982).

Fickett’s method (1982) assigns the probability of coding to a given sequence,
taking into account the overall properties of the base-sequence itself. His
methodology has a lot of features in common with ours. Both are general and do
not depend on the judgement of the users. With large samples of sequences, our
methods permit us to determine a combination of quantitative parameters—without
having to lay down any hypothesis—leading to the best discrimination between the
PCS and the NCS. Secondly, this information is tested with other samples in order
to evaluate the reliability rate of the analysis. Eventually, these results allow the
prediction of new coding and non-coding regions in published sequences.

2. Statistical Methodology

The use of statistics brings out the problem of samples and methods. We discuss
these points of our approach.

(I) Thesample of different taxonomic DNA sequences—obtained from the EMBL
Nucleotide Sequence Data Library—constitutes the data of the two statistical
methods. A representative sample is obtained with an identical number of sequences
identified as PCS and NCS, NCS were all introns of eukaryotic genes. We carry
out this choice a priori, because we suppose that a new sequence—i.e. a sequence
with an unknown function—has the same chance of being a PCS or a NCS. There
is an important restriction though: a representative sample from a data library does
not necessarily reflect the features of the population. In order to minimize the errors
which result from the choice of a single sample, the two statistical methods, for
each analysis, have been tested with several representative samples.

(I1) The principal component analysis (PCA) (Lebart et al., 1979) is a graphical
method which permits us to represent synthetically a data array without any statistical
hypothesis.

FORMULATION OF THE PROBLEM

Given the number of individuals n and the number of variables p, given the
individuals W,,..., W, and the variables V,,..., V,, the data array is the matrix
X with n lines and p columns

X=[x,<,j], i=1,...,n, j:1,...,p

where x; ; is the value of the variable j with the individual i. Thus, to the individual
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W; is associated the ith line from X defined by the vector

Xi1

X =
Xip

Each line i is considered as an element of R”, R” is called individual-space. The
set of lines forms the individual-cloud. In the same way, to the variable V; is
associated the jth column from X defined by the vector

X1,j

Each column j is considered as an element of R". R" is called variable-space. The
set of columns forms the variable-cloud. In our study, the variables are quantitative
parameters characterizing individuals which can be PCS or/and NCS. In order to
get an invariable analysis for the measure unit, each element X; ; is divided by the
standard deviation of its column. The matrix X leads then to the matrix Y
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The PCA on a space (individual-space or variable-space) consists of representing
its cloud on an affined sub-space according to an orthogonal projection. This problem
is equivalent to determining the straight line D which goes through the origin and
which adjusts at best the cloud according to a least square approximation. We shall
restrict ourselves to a demonstration pertaining to the individual-analysis.

INDIVIDUAL ANALYSIS

R? is provided with the usual Euclidean metric
(i) Given two individuals W;, W, among the n individuals having (yi;, ..., ¥i )
and (y;1,..., ¥ ,) coordinates respectively, the distance between W, and W, is

(Wi W)= WiWi= T (3= 7e.)"

(ii) Given their orthogonal projections H;, H; on a straight line D.
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(i) Given G the barycenter of the n individuals which has for coordinates

(gl; R ] gp) W1th g}:}’)}: 1/n 2?:1 yi,j'
With the Euclidean metric we have the following relation

HH>< W,W?% VYiVi.
And with the n individuals

\}j:l 21 HH= vil };1 W, W3,
The objective is to determine the best oriented straight line D which maximizes
T Y HH} (1)
Drawing D through G, leads to:
é ‘él HH}= gl 2; (HG+GH,)
By developing (note that G is also the barycenter of the projected points) we obtain
il 21 HH%=2n i GH?. 2)

Moreover

Z GW?_—" Z (GHi+HiWi)Z
i=1 i=1

=Y GHi+ Y HW; (3)
i=1 i=1

=c*.

Then, to maximize Y.,_, Y "_, H;H7 (1) is equivalent to maximizing };_, GH}(2)
which is equivalent to minimizing ¥, H;W?; (3).

FACTOR PLANE

The chosen affined sub-space will have two dimensions. Its associated vectorial
sub-space is called the factor plane. It is determined by two unitary eigenvectors
of one dimension (factor axis or principal component) of the matrix ‘T. T, where

T:[ti,j]s i:I,...,n, jzl,...,p
with

1
L ;= (n)l/z(yi,j -g).

This transformation permits centering the barycenter G on the origin of the
individual-space.
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For each analysis we have always projected the clouds in the factor plane which
retains the largest information from the numerical matrix (in general around 80% ),
the initial information being found again with all the factor planes.

GRAPHICAL REPRESENTATIONS

There are two spaces; therefore there will be two graphical representations.

The correlation circle-graph represents the projection of the variable-space. Each
variable is represented in the space R" by a point on the sphere whose center is the
origin and whose radius is equal to 1. Each variable is projected inside a circle
(correlation-circle) having the same center and radius. In our figures, the variables
(parameters) are identified by alphabetical letters.

The square-graph represents the projection of the individual-space. In our figures,
the individuals (sequences) are identified by a number followed by two letters. The
number 1 represents the NCS, the number 2 the PCS. The variables are also projected
with the individuals in the square-graph but the projection point of a given variable
is not significant, with the exception of the line which goes through this point and
the barycenter of the individual-space (which is the center of the square-graph).
This straight line is called the variable axis. Therefore, a sequence with a high
(respectively low) value for a given variable in the matrix, will have in the factor
plane an orthogonal projection on the given variable axis nearest to (respectively
far away from) the projection point of the given variable. In this case, the variables
are identified by the number 0 followed by two numbers and located on the square
perimeter.

(III) The discriminating analysis (DA) (Romeder, 1973) is a numerical method
which permits to classify, according to a given combination of quantitative para-
meters, individuals which are divided into classes without any statistical hypothesis.
The DA is a PCA about the barycenters of individual classes. This analysis is done
with a metric (D? of Mahalanobis, 1936) on the individual-space for two purposes:
(i) in order to keep the barycenters away from one another; (ii) in order to group
the individuals of each class around their barycenter.

Taking the above mentioned definitions, then the distance of Mahalanobis between
two individuals W;W is

dz( W, W)= [(xi - Xy) V—l(xi - %)
where V is the variance-covariance matrix:
V=[v;;], j=1,...,p j=1...,p
with

Uiy =

X -

él (xi,j “fj)(xi,j"' fj)

In the case of our study, this analysis is evident since there are only two classes:
the class of PCS and the class of NCS. Therefore, there is only one factor axis
which is the straight line joining the barycenters of the two classes. The decision
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rule is a rule of assignment to the nearest neighbour and hence, the success-
percentage of a sample is the percentage of sequences correctly classified with the
DA. In actual fact, the representative sample is separated into two representative
samples. For a given combination of parameters, the DA determines with a basis
sample (7/10 of the initial sample sequences and with an equal number of PCS and
NCS), the new metric and the success-percentage (which is called success-percentage
of the basis sample). Next, this information is tested with a test sample which
contains 3/10 of the initial sample sequences and also with an equal number of
PCS and NCS. Obviously, in this case there is only one evaluation of the success-
percentage (which is called success-percentage of the test sample). Now, to determine
the best combination of parameters, a step-by-step method permits us to choose
successively 1, 2, ... i variables, among the p variables, calling into question—at the
i step—the choice of the variables at the i — 1 step. For each step, this latter method
keeps only the combination of parameters which has given the best success-percen-
tage of the basis sample with the DA, Therefore, the best combination of parameters
will be the combination of parameters which has the best success-percentages with
the basis and test samples. Programs were written in FORTRAN 77 and run on a
NORD 500 computer.

3. Results

(A) Dj PARAMETER ANALYSIS

The D; parameter is defined as follows: D;= T;/ L.

T;: number of thymine-couples where the two thymines are separated by j bases
in a given sequence.

L: number of bases in a given sequence which permits a normalization independent
of the base distribution.

By varying j between 0 and 9, a given sequence is characterized by 10 parameters
which may have the forms Dgis,, D3, and D, ;, with 0=n=3.

These D; parameters are similar to Fickett’s parameters called autocorrelation
for thymine (cf. Fickett (1982), Fig. 1).

(a) Sample of 507 PCS with lengths greater than 200 bases

Principal component analysis on the D; parameter-space. Figure 1 shows two groups
of well separated parameters; on the one hand the group 2, 5, 8 (graphical symbols
C, F, I) which have the form (D,,;,, n=0); on the other hand the group 0, 1, 3,
4, 6, 7, 9 (graphical symbols A, B, D, E, G, H, J) which have the form (Dg.3,,
D,.;,, n=0). In order to get a readable graph, we have only represented 10
parameters. But this difference of periodicity between the two groups of parameters
has been found again with the D; parameters, j varying between 0 and 198.
Furthermore, the same conclusions have been obtained with the analyses of the
three other bases: adenine, cytosine and guanine.

Clearly, our statistical method allowed us to again produce Fickett’s results (1982)
of autocorrelation for thymine. Indeed, the top graph of Fickett’s Fig. 1, shows that
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F1G. 1. D; parameter analysis. Sample of 507 PCS with lengths greater than 200 bases. Principal
component analysis on the D; parameter-space (j varying between 0 and 9). Correlation circle with a
radius equal to 1.

Coordinate Coordinate
Graphical symbols D; parameters (Horizontal) (Vertical)
A D, 0-94 0-19
B D, 0-95 0-13
c D, 0-96 -0-18
D D, 0-97 0-03
E D, 0:97 0-03
F Dy 0-95 -0-22
G Dy 0-97 0:06
H D, 0-96 0-07
1 Dy 0-96 -0-19
J D, 0-97 0-09

there is a difference of percentages between the thymine-couples separated by 2+ 3n
bases and those separated by 0+3n, 1+ 3n bases, n varying between 0 and 66. 2+3n
are represented by peaks, whereas 0+3n, 1+ 3n are represented by troughs. Shulman
et al. (1981) also showed this property by making use of statistical tests pertaining
to the nucleotide sequences of the RNA phage MS2 and the DNA phase 8X.

Principal component analysis on the PCS-space. In order to simulate chance, we
have generated a random sequence with the Monte Carlo method. This one is
projected to the barycenter of the PCS. Hence, the mean value of the ten D
parameters with all the PCS is near the mean value of the ten D; parameters with
the random sequence which has base frequencies equal to 0-25 with a variation
smaller than 0-004.

This result still agrees with Fickett’s results (1982). The top graph of Fickett’s
Fig. 1, shows that the mean percentage of the thymine-couples, separated by k bases,
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is small, k varying between 0 and 198 and particularly for k varying between 0 and
9. This mean percentage value is near to zero which demonstrates the randomness.

(b) Sample of 90 NCS with lengths greater than 200 bases

For the purpose of characterizing specifically the PCS, we have applied the same
analyses with the NCS.

Principal component analysis on the D; parameter-space. Figure 2 does not allow
to identify groups of D; parameters (graphical symbols A4, ...,J). We have never
found any groups of D; parameters with j varying between 0 to 198. Furthermore,
the same conclusions have been obtained with the analyses of the three other bases.

Along the same lines, the bottom graph of Fickett’s Fig. 1, (1982) shows that the
percentages of the thymine-couples separated by 0+3n, 1+3n and 2+ 3n bases, are
almost identical, n varying between 0 and 66.

FIG. 2. D; parameter analysis. Sample of 90 NCS with lengths greater than 200 bases. Principal
component analysis on the D; parameter-space (j varying between 0 and 9). Correlation circle with a
radius equal to 1.

Coordinate Coordinate
Graphical symbols D; parameters (Horizontal) (Vertical)
A Dy, 0-96 -0-23
B D, 0-97 0-03
C D, 098 —-0-02
D D, 0-98 0-16
E D, 0-98 -0-03
F Dy 0-98 -0:07
G Dy 0-98 0-05
H D, 0-98 0-12
I Dy 0-98 —-0-07
J D, 0-99 0-05
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Principal component analysis on the NCS-space. Contrary to the PCS, the random
sequence has an orthogonal projection on the D; parameter axes far away from the
projection points of the D; parameters, i.e. it has low values (below average) for
the D; parameters. Hence, the mean value of the ten D; parameters with all the
NCS is higher than the mean value of the ten D; parameters with the random
sequence.

This result still agrees with Fickett’s results (1982). The bottom graph of Fickett’s
Fig. 1, shows that the mean percentage of the thymine-couples, separated by k bases,
is higher than zero with the first values of k, in particular for k varying between 0
and 9.

(¢) Sample of 58 PCS and 57 NCS with lengths greater than 200 bases

The ten D; parameters permit to distinguish between the PCS and the NCS. As
a matter of fact:

(i) only with the PCS, two groups of parameters (D,.3,, n =0) and (Dg.3,, D113,
n=0) have a difference of periodicity.

(ii) The mean value of the ten D; parameters with the NCS is higher than the
mean value of the ten D; parameters with the random sequence and the PCS.

We want to test if these characteristics are sufficient to classify the sequences into
coding ones or into non-coding ones.

Principal component analysis on the D, parameter-space. The two groups of para-
meters are individualized, but not quite as readable as with the single sample of
PCS. This is probably a consequence of the background noise introduced by the NCS.

Principal component analysis on the space of PCS and NCS. Figure 3 shows a
separation between the PCS (letters preceded by number 2) and the NCS (letters
preceded by number 1). We have characterized this separation by a straight line D.
In future, we shall make use of automatic classification in order to draw the lines.
As a rule, the NCS have orthogonal projections on the ten D; parameter axes which
are closer to the projection points of the ten D; parameters than to the PCS and
the random sequence (graphical symbol 283).

Discriminating analysis

Figure 4 shows that, at the sixth step, the best combination is obtained with the
parameters D,, D;, D,, D,, Dg, Dy, which classify into coding or into non-coding
sequences; the sequences of a basis sample (40 PCS and 40 NCS) and of a test
sample (18 PCS and 17 NCS) with success-percentages of about 86%. The introduc-
tion of additional parameters does not increase the success-percentages, whereas
the suppression of parameters may sometimes involve an important modification
of them. The parameters D;, D, having the form (Dg.3,, n =0), Dy, D; having the
form (D,.3,, n=0) and D,, Dy having the form (D,,3,, n=0), suggest that the
discriminating parameters do not necessarily depend on the properties of the genetic
code. This fact will be tested below with other samples and parameters.

Fickett’s method (1982) misclassifies 5% of the regions tested and gives an answer
of “no opinion” one-fifth of the time. If we consider that there is one chance out
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FI1G. 3. D; parameter analysis. Sample of 58 PCS and 57 NCS with lengths greater than 200 bases.
Principal component analysis on the space of PCS and NCS. The letters having the form 00j represent
the parameter D; (j varying between 0 and 9). The letters preceded by number 1 represent the NCS,
the ones preceded by number 2 the PCS. The graphical symbol 28$ represents the random sequence.
The visual separation limit of the two groups of sequences has been characterized with a straight line D.

of two to classify a sequence among the “‘no opinion”, then the success-percentage
if 85%. Therefore, Fickett’s probabilistic method, using parameters related to the
properties of the genetic code, and our statistical method—using parameters which
are only based on the distribution of thymine—give success-percentages having
similar magnitudes.

(B) DI; PARAMETERS ANALYSIS

In order to carry on the investigations of the above hypothesis, we define the DI,
parameter as follows: DI, = TL/L.

TI;: Number of thymine-couples where two thymines are separated by j bases
other than thymine in a given sequence.

L: Number of bases in a given sequence which permits a normalization
independent of the base distribution.

By varying j between 0 and 15, a given sequence is characterized by 16 parameters.
The DI, parameters do not have the same chances to appear. But it is not necessary
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F1G. 4. D; parameter analysis. Sample of 58 PCS and 57 NCS with lengths greater than 200 bases.
Discriminating analysis: The horizontal axis represents the Pi which corresponds to i parameters D; for
the step i which has given the best success-percentage of the basis sample (i varying between 1 and 10,
j varying between 0 and 9). The vertical axis represents the success-percentage. The full line represents

the basis sample, the dashed line the test sample.

P1: Dy

P2: D,, D,

P3: Dy, Dy, Dy

P4: Dy, D,, Dg, Dg

P5: Dy, Dy, Dy, D;, Dy

P6: D,, D;, Dy, D;, Dg, Dy

P7: Dy, D,, D;, D,, D;, Dg, Dy

P8: D,, D,, D,, D, Dg, Dy, Dy, Dy

P9: Dy, D,, D,, D;, Dy, Dg, D;, Dg, Dy

P10: Dy, D,, D,, D,, D4, Ds, Dy, D;, Dy, Dy

to do probabilitistic corrections because the numerical data are divided by the

standard deviation of their columns.
The sample contains 57 PCS and 56 NCS with lengths greater than 200 bases.

Principal component analysis on the DI; parameter-space

This analysis individualizes a group of three parameters: DI,, DI,, DI, which
are strongly correlated. Hence, a sequence, being either a coding or non-coding
one, which has a high (respectively low) value for one of the three parameters, will
have high (respectively low) values for the two others.

Principal component analysis on the space of PCS and NCS

Figure 5 shows a separation (straight line D) between the PCS (letters preceded
by number 2) and the NCS (letters preceded by number 1). As a rule, the IVS have
orthogonal projections on the DIy, DI,, DI, parameters axes which are closer to
the projection points of the DI,, DI,, DI, parameters than to the PCS. Therefore,
the NCS have more doublets TT (thymine-thymine), triplets TXT, quadruplets
TXXT (X represents any base but thymine) than the PCS.
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Fi1G. 5. DI; parameter analysis. Sample of 57 PCS and 56 NCS with lengths greater than 200 bases.
Principal component analysis on the space of PCS and NCS. The letters having the forms 00j or 0j
represent the DI; parameters (j varying between 0 and 15). The letters preceded by number 1 represent
the NCS, the ones preceded by number 2 the PCS. The visual separation limit of the two groups of
sequences has been characterized with a straight line D.

Discriminating analysis

Figure 6 shows that, at the fifth step, the best combination is obtained with the
parameters DI,, DI,, DI,, DI, and DI;. The success-percentage is about 91% with
the basis sample (40 PCS and 39 NCS) and about 84% with the test sample
(17 PCS and 17 NCS).

Therefore, the DI; parameters as the D; parameters can discriminate the sequences
without using any properties of the genetic code.

4. Discussion

The principal component analysis and the discriminating analysis without statis-
tical hypothesis allow DNA sequences to be analysed. Indeed, these two complemen-
tary statistical methods permitted, on the one hand, reproduction of many results
of Fickett’s probabilistic method (1982); on the other hand, showing the existence
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Discriminating analysis: The horizontal axis represents the Pi which corresponds to i parameters DI;
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10, j varying between 0 and 15). The vertical axis represents the success-percentage. The full line represents
the basis sample, the dashed line the test sample.

Pa: DI,, DL, DI, DI;

Ps: DI, DI,, DL, DI, DI;

pé: DI, DI,, DL, DI,, DI,, DI,

p7: DI, DI,, DL, DI, DI,, DI, DI,

P8: DI, DI,, DL, DI,, DI, DI, DI, DI,

P9: DI, DI,, DL, DI,, DI,, DI, DI, DI,, DI,

p10: DI,, DI,, DL, DI, DI,, DI, DIy, DI,, DIy, DI,

of parameters which discriminate DNA sequences in coding or non-coding ones,
without having to make use of the properties of the genetic code.

Nevertheless, there are differences with the data and with their treatment between
the probabilistic and the statistical methods. Fickett uses a sample having a number
of coding sequences which is greater than the number of non-coding sequences in
a ratio of 1-3; this perceived bias was not corrected. The essential point is that the
probabilistic method is losing information because the data cannot be retrieved
from the results.

The principal component analysis is a graphical method which permits expression
of a large data array. There is no waste of information because the study of all
factor planes leads again to the initial information. This fast method allows the
analysis of biological hypotheses: it is a help to the intuition. The discriminating
analysis is a quantitative method to confirm the hypotheses: it is an aid to the decision.

The generality of this methodology allows testing of any quantitative parameters
without limitation of number or of combination; this being valid on any set or any
subset of sequences. Indeed, with an interactive communication, the sequences can
be chosen according to taxonomic groups or intervals of length. Therefore, different
groups of discriminating parameters can be used to classify sequences.
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The principal component analysis and the discriminating analysis, associated with
other methods and with the increase of known sequences, allow not only to distin-
guish between coding and non-coding sequences, but also in a more general way,
to reveal genetic constraints which are specific to some species.

I would like to express my sincere thanks to Professor Thomas Bickle and to Dr John
Shephetd, both from the Biozentrum of Basel; to Dr Didier Arques, from the Institut des
Sciences Exactes et Apliquées de Mulhouse, and to Dr Pierre Oudet, from the Laboratoire
de Génétique Moléculaire des Eucaryotes du CNRS de Strasbourg for their cooperation and
their kind encouragement.
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