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ABSTRACT 

The mutation process is a classical evolutionary genetic process. The type of 
mutations studied here is the random substitutions of a purine base R (adenine or 
guanine) by a pyrimidine base Y (cytosine or thymine) and reciprocally (transver- 
sions). The analytical expressions derived allow us to analyze in genes the occurrence 
probabilities of motifs and d-motifs (two motifs separated by any d bases) on the 
R/Y alphabet under transversions. These motif probabilities can be obtained after 
transversions (in the evolutionary sense; from the past to the present) and, unexpect- 
edly, also before transversions (after back transversions, in the inverse evolutionary 
sense, from the present to the past). This theoretical part in Section 2 is a first 
generalization of a particular formula recently derived. The application in Section 3 
is based on the analytical expression giving the autocorrelation function (the d-motif 
probabilities) before transversions. It allows us to study primitive genes from actual 
genes. This approach solves a biological problem. The protein coding genes of 
chloroplasts and mitochondria have a preferential occurrence of the 6-motif 
YRY(N),YRY (maximum of the autocorrelation function for d = 6, N = R or Y) 
with a periodicity modulo 3. The YRY(N),YRY preferential occurrence without the 
periodicity modulo 3 is also observed in the RNA coding genes (ribosomal, transfer, 
and small nuclear RNA genes) and in the noncoding genes (introns and 5’ regions of 
eukaryotic nuclei). However, there are two exceptions to this YRY(N),YRY rule: 
the protein coding genes of eukaryotic nuclei, and prokaryotes, where YRY(N),YRY 
has the second highest value after YRY(N),YRY (YRYYRY) with a periodicity 
modulo 3. When we go backward in time with the analytical expression, the protein 
coding genes of both eukaryotic nuclei and prokaryotes retrieve the YRY(N),YRY 
preferential occurrence with a periodic@ modulo 3 after 0.2 back transversions per 
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base. In other words, the actual protein coding genes of chloroplasts and mitochon- 
dria are similar to the primitive protein coding genes of eukaryotic nuclei and 
prokaryotes. On the other hand, this application represents the first result concern- 
ing the mutation process in the model of DNA sequence evolution we recently 
proposed. According to this model, the actual genes on the R/Y alphabet derive 
from two successive evolutionary genetic processes: an independent mixing of a few 
nonrandom types of oligonucleotides leading to genes called primitive followed by a 
mutation process in these primitive genes. Indeed, the mutation process can simulate 
statistical properties identified in genes, e.g., the variations between YRY(N),,YRY 
and YRY(N),YRY, which could not have been so far simulated with the mixing 
process. 

1. INTRODUCTION 

The autocorrelation function defined in [l, 21 and given in a general- 
ized form in Section 3.2 allows us to analyze in gene populations the 
mean occurrence probabilities of d-motifs, a d-motif being two motifs 
(a series of a few nucleotides, e.g., a trinucleotide) separated by any d 
bases. This autocorrelation function allows the identification of nonran- 
dom statistical properties in genes on the purine (R)/pyrimidine (Y) 
alphabet (R = adenine or guanine, Y = cytosine or thymine) [l-5]: 
periodicities (module 2, 3, etc.) and subperiodicities, the preferential 
occurrence of the 6-motif YRY(N),YRY (N = R or Y) in various genes 
(global maximum of the autocorrelation function for d = 6 in functional 
and taxonomic genes), local maxima, etc. These properties are impor- 
tant as they have a biological meaning, e.g., a periodic@ modulo 3 
reveals a protein (coding) gene, a periodic&y modulo 2, large alternating 
R/Y stretches found in noncoding genes, etc. They are related to a 
specific nucleotide ordering in the genes which can be studied with the 
development of models simulating molecular evolution. 

The mutation process is a classical evolutionary genetic process 
analyzed by different theories, e.g., the neutral theory [6, 71. The type of 
mutations studied here is the random substitutions of R by Y and Y by 
R (transversions). Two analytical expressions solved in Section 2 allow 
us to analyze the d-motif probabilities (the autocorrelation function) 
after transversions (in the evolutionary sense, from the past to the 
present) and also before transversions (after back transversions, in the 
inverse evolutionary sense, from the present to the past). Different 
properties and a generalization to d-motifs with motifs of any base 
length are also derived from these formulas. The application in Section 
3, based on the analytical expression giving the autocorrelation function 
after back transversions, solves a biological problem. Indeed, it demon- 
strates that the protein genes of both eukaryotic nuclei and prokaryotes 
which do not have the YRY(N),YRY preferential occurrence found in 
the protein genes of chloroplasts and mitochondria, in the RNA coding 
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genes (ribosomal, transfer, and small nuclear RNA genes), and in the 
noncoding genes (introns and 5’ regions of eukaryotic nuclei), retrieve 
this property after 0.2 back transversions per base. These primitive 
protein genes of eukaryotic nuclei and prokaryotes have the 
YRY(N),YRY preferential occurrence with a periodicity modulo 3 
such as that of the actual protein genes of chloroplasts and mitochon- 
dria. In the Discussion (Section 4), we briefly recall the properties of the 
autocorrelation function. Then, we summarize the calculus methods of 
the autocorrelation function which are not analytical. We present the 
properties of the analytical expressions solved here, in particular those 
associated with the generalization and the inverse evolutionary sense. 
Then, the mutation process is replaced in the oligonucleotide mixing 
model which we have recently developed [3]. Finally, we discuss the 
results of other methods and the biological data which may support the 
result obtained with the application. 

2. THEORY 

2.1. RECALL OF THE POISSON EVEN/ODD DISTRIBUTION 
ASSOClATED WITH RANDOM SUBSTITUTIONS 

Let s be a sequence of base length e(s) on the alphabet {R,Y] 
(R = purine = adenine or guanine, Y = pyrimidine = cytosine or 
thymine). This sequence s is subjected to transversions, i.e., random 
substitutions of a base R (resp. Y) by the base Y (resp. R) at random 
sites in s. Let x be the number of transversions per base (per base site) 
in average, i.e., the total number of transversions in s divided by the 
length J(s) of s. Note that in the following, “x transversions” always 
stand for “x transversions per base in average.” 

The transversion number of a base in a given site of a sequence 
subjected to random substitutions per base of mean x follows a Poisson 
law of parameter x (e.g., the classical proofs in [8, p. 447; 6, p. 69; 7, p. 

401). 
We define P, ~ Jx> (resp. P, --t y(x>, P,, &), P, --) &t)) as being 

the probability that a base R (resp. R, Y, Y) in the sequence s before 
the substitution process is R (resp. Y, R, Y) after x transversions. Then, 

H(x)= P,,.(x)= P,,, (x) =(l- e-“)/2 is the probability that a 
given site in s is subjected to an odd number of transversions and 
Z(x) = P, ~ .(x) = P,,.(x) = 1- B(x) = (l+ ep2’)/2 is the probabil- 
ity that a given site in s is subjected to an even number of transversions 
(proof detailed in [51X The two formulas 8(x) and B(x) obtained on 
the alphabet {R,Y] are similar to those obtained on the alphabet 
{A,C, G,T] with the one-parameter model (a unique rate of substitu- 
tions; see [9]> and with the two-parameter model (a rate of transitions 
and a rate of transversions; see [lo]). 
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2.2. ANALYTICAL EXPRESSION OF THE d-MOTIF PROBABILITY AFTER 
RANDOM SUBSTITUTIONS 

Let the motif m be a trinucleotide (series of three bases) on the 
alphabet {R, Y}, i.e., m E (RRR,. . . , YYY}. Let the d-motif m,(N),m, 
be two motifs m, and m2 separated by any d bases N (N = R or Y), d 
being a given constant, i.e., m,(N),m, E IRRR(N),RRR, 
RRR(N),RRY,..., YYYC N),YYY}. By convention, in the following the 
indexes i or j E [l, 641 represent the d-motifs RRR( N Id 
RRR,RRR(N),RRY,..., YYY(N),YYY in the alphabetic order. Let 

_%j,i> be the number of identical bases in the same d-motif site 
between the d-motifs i and j, e.g., A1,2) = 5, 1 representing 
RRR( N ),RRR and 2, RRR( N jd RRY. The d-motif probabilities after x 
transversions (at time t) can be obtained from the d-motif probabilities 
before the substitution process (at time 0) (see Figure l), T being the 
unknown number of transversions per base in average between the 
times 0 and today. 

THEOREM 1 

Let LpiCx)l,<i<,s$ be the probabilities of the d-motifs i, i E [l, 641, in a 
given sequence after x transversions. Then, 

64 

Pi(X) = c C;(o)~(x)~Y"."a(~)6-~',') (1) 
j= 1 

P,( X + y) = ; q X)&7( y)A”i’@( y)6-Aj3’) (2) 
j= I 

pi(,) = f qx)g7(7 - x)LfijJg(7 - x)6pAjJ, 
(3) 

j=l 

where Pi(r) represents the actual d-motif probabilities. 

Time 
0 

Mean number 
of substitutions 

per base 0 

> 
today 

I > 
x+Y z 

d-motif [‘j(O)1 l<jC64 P&x)1 

I 
probabilities 

FIG. 1. d-motif probabilities after transversions. 



ANALYTICAL EXPRESSION WITH RANDOM MUTATIONS 107 

Proof (1) Formula deduced from the fact that the probability of the 
d-motif j, j E [l, 641, giving the d-motif i, i E 11, 641, after x transver- 
sions is ~(~)~j,~)~(x)~~~j,~). Precisely, let MF be the event “a d-motif, 
randomly chosen in a sequence after x transversions, is of type i.” 
Then, 

Pi(x) = P( M;) 

= E P(M;)X P(M;IM;) 
j=l 

= E P,(O) x P( d-motif j + d-motif i after x random 
j=l 

substitutions per base in average) 

= j~lp,(o)o(x)~j~“cs(x)6-I”.“. 

(2) 

= E E ~(0)8(x).P”,k)b(X)6-~(i.k) 

( k=l j=l 

xB(y)9(k,i)~(y)6~~k,i) 
bY (1) 

=E:((x+y). 

(consequence of exponential properties) 

(3) Particular case of the formula (2) with y = r - x. It gives the 
actual probabilities in function of the past probabilities. 

Remarks. The formula P,(x) (1) is a particular case of the formula 
(2) with x = 0 and y = x. The formula Pi(x) (1) converges as expected 
toward the random value l/64 = 0.015625 when the number x of 
transversions increases, whatever the d-motif i and whatever the d-motif 
probabilities Pj(0) (consequence of negative exponentials). 
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The formula Z’i(~> (1) can be generalized to two motifs of base 
lengths h, and A,: 

2.3. ANALYTICAL EXPRESSION OF THE d-MOTIF PROBABILITY 
BEFORE RANDOM SUBSTITUTIONS (AFTER RANDOM BACK 
SUBSTITUTIONS) 

The problem of Section 2.3 is the inverse problem of Section 2.2. Let 
r (resp. X) be the number of transversions per base in average between 
the times 0 and today (resp. t) (see Figure 21. Let y be the number of 
transversions per base in average between the times t and today, i.e., 
T = x + y. In the previous problem of Section 2.2, the reference time is 
the time 0 (before the substitution process), while in the inverse 
problem, the reference time is today (after the substitution process). 
Note: In the following, “x (resp. y) transversions” always stands for “x 
(resp. y) transversions per base in average.” 

Therefore, the inverse problem consists in expressing Qi(y> ( = Pi 
(T - yl> in function of [Q,(O) = PI, gjG64 and more generally Q, 
(y + z) ( = PJr - y - z>> in function of [Q,(z) = P,(r - ~11, ~ js h4, i and 
j E [l, 641 representing the alphabetic order of d-motifs. 

Time I 
0 

Mean number 
of substitutions o 

per base 

> 
today 

> 
t 

d-motif 

probabilities 

Y 0 

Qi(y) (=Pi(z-y)) in function Of [Qj(O)=Pj(‘)I l~j~6r 

I 

FIG. 2. d-motif probabilities before transversions. 



ANALYTICAL EXPRESSION WITH RANDOM MUTATIONS 109 

PROPOSITION 2 

Qj( y + z) = ; Qj( ~)a( - yf=‘@( - )J)~-~@) 
(4) 

j= 1 

Qi( y) = E f’( ~)8( - y)A”“‘@‘( - y)6-Ai’i), (5) 
;=1 

with Z( - y) = (1+ &‘)/2 and a( - y) = (1 - e9/2. 

Proof (4) The inverse matrix of [~(y)g”,“n(y)h~sci,i)ll ~ i,j~ 64 as- 
sociated with formula (2) in Theorem 1 is [g(_ y)Ly(i,i) 

a( - y)6-Ajq < ‘,, $ 64. Then, formula (2) implies that 

pi(x)= ~p,(x+y)8(-y).y('.i)~(-y)6-~j,~). 
j= I 

Then, 

Qi(y+z)=Pi(7-y-z) 

64 

= c pj(7 _ z)g( _ y)Lfij,l)H( _ y)6-cfij,L) 

j=l 

(5) Particular case of formula (4) with z = 0. 

Remarks. The formula Q,(y) (5) will be used in the application in 
Section 3 to determine the d-motif probabilities after back transversions 
in the protein coding genes, the actual d-motif probabilities Pj(7) = Q,(O) 
being computed from gene databases. Contrary to the formula Pi(x) (1) 
the formula Qi(y) (5) does not converge when the number y of 
transversions increases (see Section 2.4). 

The formula Qi(y> (5) can be generalized to two motifs of base lengths 
A, and A, in the same way as with P,(x) (1): 

2”‘+“: 

~~(~1 = C q(T)g( _ y)9”xi)8( _ y)A~+ A2 -fici.i), 
j=l 
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2.4. BIOLOGICAL MEANING OF THE PREVIOUS FORMULAS 

f’i(x) = Q,(Y) ifx+y=TandO<x,y<r 

(see Figure 2). The formula Pi(x) (1) gives the evolution of the d-motif 
probabilities when we go from the past to the present and when the 
number of transversions increases from 0 to T (after transversions). 
p;(x) can be obtained either exactly by analytical expression or approxi- 
mately by computer simulation (simulation of random substitutions in 
simulated sequences). 

The formula Qi(y> (5) gives the inverse evolution of the d-motif 
probabilities, when we go from the present to the past and when the 
number of transversions decreases from T to 0 (before transversions or 
after back transversions). Contrary to pj(x), Q,(y) does not converge 
when the number y of transversions increases. However, the vector 

[Q;(Y)], <, < 04 must remain a probability vector, i.e., the 64 values Q,(y) 
must be bounded between 0 and 1 (and of sum 1). Therefore, the 
condition 0 < Q,(y) < 1 for i in [l, 641 implies a maximal number of 
transversions. Another difference with P,(x) lies in the fact that Q;(y) 
can only be obtained by analytical expression and not by computer 
simulation. Indeed, as the site and the order of previous substitutions 
are unknown, it is impossible to reproduce the effects of back substitu- 
tions in the exact nucleotide ordering of actual genes. 

3. APPLICATION: RANDOM BACK SUBSTITUTIONS IN THE 
PROTEIN CODING GENES 

3.1. PRESENTATION OF THE PROBLEM 

Since 1987 the biological problem related to the YRY(N),YRY 
preferential occurrence in the protein (coding) genes has remained 
unsolved. 

The 6-motif YRY( N),YRY studied with the autocorrelation function 
analyzing the occurrence probability of the d-motif YRY(N),YRY by 
varying d between 0 and 99 (100 points) has a preferential occurrence 
because it has the highest value among 100 points in almost all gene 
populations [2, 31. It should be remembered that a curve with 100 
different points can lead to lOO! (10”s) possible curve shapes and that a 
maximal value common to iz different gene populations has a probabil- 
ity equal to l/100” in the random case. Such a statistical evaluation 
with the gene populations available in 1987 leads to a YRY(N),YRY 
probability of order lo-” if the nucleotide distribution in genes is 
random [2]. Furthermore, since 1987, the preferential occurrence of 
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YRY(N),YRY was observed in several new gene populations and 
subpopulations ([3]; data not shown). 

The YRY(N),YRY preferential occurrence is found in genes accord- 
ing to three main types [3]: (1) the YRY(N),YRY preferential occur- 
rence without periodicity observed in RNA coding genes (ribosomal, 
transfer, and small nuclear RNA genes), (2) the YRY(N),YRY prefer- 
ential occurrence with a periodicity modulo 2 identified in noncoding 
genes (introns and 5’ regions of eukaryotic nuclei) by deleting their 
large alternating R/Y stretches (not detailed here), and (3) the 
YRY(N),YRY preferential occurrence with a periodicity modulo 3 for 
d = 0[3] (maximal values for d = 0, 3, 6, etc.) found in protein genes 
according to two subtypes which are analyzed and solved here with the 
following protein gene populations: chloroplasts (1002 genes, 812 kb), 
mitochondria (813 genes, 666 kb), eukaryotic nuclei (13,997 genes, 
19,148 kb) and prokaryotes (5729 genes, 6866 kb). These gene popula- 
tions are obtained from the release 32 of the European Molecular 
Biology Laboratory (EMBL) Nucleotide Sequence Data Library in the 
same way as described in previous studies (see, e.g., [3] for a description 
of data acquisitions). 

In the protein genes of chloroplasts and mitochondria, YRY(N),YRY 
has the highest probability with a periodicity modulo 3 nonuniform (the 
top curve d = 0[3] and the bottom curve d = 1,2[3] are not horizontal) 
(Figures 3a and 3b). 

In the protein genes of eukaryotic nuclei and prokaryotes, 
YRY(N),YRY does not have the highest probability. It occurs after 
YRY(N),YRY (YRYYRY) with a periodicity modulo 3 uniform (Fig- 
ures 4a and 5a). According to the statistical analysis performed on the 
gene populations available, this statistical perturbation only exists in 
these two gene populations and their subpopulations, e.g., nuclear 
protein genes of primates and rodents (data not shown). Furthermore, 
because of the law of large numbers (in [3], p. 752, Section 2.3.3), 
nonrandom statistical properties identified with populations made of 
several hundreds of genes are stable from a statistical point of view. 
Since the 10th release of the EMBL gene database, the second highest 
value of YRY(N),YRY after YRY(N),YRY was observed in these two 
populations with each new release. In summary, this perturbation 
cannot be attributed to any statistical bias. However, no explanation has 
been proposed so far for this unexpected second highest value of 
YRY( N),YRY. 

The formula Qi(y) (51, using the d-motif probabilities c(r) = Q,(O) 
of actual genes (see Figure 2 and also Figure 8 in Section 4) obtained 
from gene databases, allows us to determine by varying d the autocorre- 
lation function after back transversions (Section 3.2.1). We will show 
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FIG. 3. YRY(N),YRY preferential occurrence with a periodicity modulo 3 
nonuniform in the actual protein coding genes of chloroplasts and mitochondria. 
Autocorrelation function analyzing the actual probability (Q46(0. d)) of 
YRY(N),YRY in the protein coding genes of (a) chloroplasts; (b) mitochondria. The 
horizontal axis represents the number d of bases N between 2 YRY, d E [0,49], i.e., 
YRY( N ),YRY. The vertical axis represents the YRY( N),YRY probability. 

that the protein genes of both eukaryotic nuclei arid prokaryotes have 
the YRY(N),YRY preferential occurrence with a periodicity modulo 3 
after 0.2 back transversions similar to the actual protein genes of 
chloroplasts and mitochondria. 

3.2. AUTOCORRELA TION FUNCTION 

3.2.1. Autocorrelation function analyzing the probability of the d-motif 
YRY(N),YRY ft a er random back substitutions. The inverse substitution 
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process of the 6-motif YRY(N),YRY, the O-motif YRY(N),YRY, and 
the periodicity modulo 3 in the protein genes of eukaryotic nuclei and 
prokaryotes is studied by using the formula Qi(y) (5) for i = 46, i.e., 
QJ6(y) (YRY(N),YRY is the 46th d-motif in the alphabetic order) and 
by varying d, noted Qd6(y,d), in the following. Qb6(y,d) is an autocor- 

0.009 ~“““““‘~“1”~“~“~“~““““1”‘~~“‘~“~~ 
0 3 6 9 12 1518 2124 27 30 33 36 39 42 45 48 

d 

(a) 

0.007""""'.".""""""""""""""""".." 
0 3 6 9 121518 2124 27 30 33 36 39 42 45 48 

d 

@) 

FIG. 4. YRY(N),YRY preferential occurrence with a periodicity modulo 3 
nonuniform before 0.2 transversions per base (after back transversions) in the 
protein coding genes of eukaryotic nuclei. Autocorrelation function analyzing the 
probability of YRY(N),YRY in the protein coding genes of eukaryotic nuclei: (a) 
actual (Qd6(0, d)): second highest probability of YRY(Nl,YRY after YRY(N),YRY 
with a periodic@ module 3 uniform; (bl before y = 0.1 transversions per base 
(Q4h(0.1,d)): same probability for YRY(N),YRY and YRY(N),,YRY; (cl before 
y = 0.2 transversions per base (Q46(0.2,d)): highest probability of YRY(N),YRY 
with a periodic@ modulo 3 nonuniform. The horizontal axis represents the number 
d of bases N between 2 YRY, d E [0,49], i.e., YRY(Nl,YRY. The vertical axis 
represents the YRY( N),YRY probability. 
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FIG. 4. (Continued) 

relation function by definition 

64 

Q,,(y,d) = c l+,d)8( - y)9(‘,46)6’( - ~)‘-j,~~), (6) 
;=1 

with j E [l, 641 representing the d-motifs in the alphabetic order, 
d E [0,49] being the number of any bases N between the two trinu- 
cleotides, y being the number of back transversions per base in average, 
and Pj(r, d) being the previous probabilities Pj(r) in which d varies. 

Remarks. For y = 0 (before the inverse substitution process), it can 
be easily verified in the formula Q4h(y, d) (6) that Q&O, d) = P46(~, d). 

In order to compute the formula Q46(y, d) (61, it is easier to rewrite 
it as follows: 

Q,,(y,d) = y& 5 ( c P,(r,d))(l+ezy)i(I-e2y)6-k. 
k=O I/.Y(j,46)=k 

In order to use the formula Q4h(y,d), the actual d-motif probabili- 
ties Pj(r, d) = Qj(O, d) are computed by generalizing the previous auto- 
correlation function definition 121 to any trinucleotide on the R/Y 
alphabet. This method is described in what follows. 

3.2.2. Autocorrelation function analyzing the actual probabilities of 
d-motifs. Let F be a gene population with n(F) DNA sequences. Let 
s be a sequence in F with a length e(s). Let j be the alphabetic order 
of the d-motifs RRR(N),RRR, RRR(N),RRY,...,YYY(N),YYY, j E 
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[l, 641 and d E [0,49], i.e., these d-motifs are characterized by j E [l, 641, 
their number in the alphabetic order, and by d E [0,49], their number of 
any bases N between the two motifs m, and m2 (m,,m, E 
{RRR,. . . ,YYY}). In the following, we call a d-motif j, the jth d-motif 
in the alphabetic order. For each s of F, the counter c,,~(s) counts the 

~.@ll"""""""'.".""',""."'.'..".'."."."' 
0 3 6 9 12 15 18 2124 27 30 33 36 39 42 45 48 

d 

(a) 

0.014 

2 
a 0.011 

z 

G 
g 0.01; 

w 
0 

g 0.011 

& 

0.01 

--- ~----____________---- 

0 3 6 9 12 15 18 2124 27 30 33 36 39 42 45 4E 

d 

@) 

FIG. 5. YRY(N),YRY preferential occurrence with a periodicit)r modulo 3 
nonuniform before 0.2 transversions per base (after back transversions) in the 
protein coding genes of prokaryotes. Autocorrelation function analyzing the proba- 
bility of YRY(N),YRY in the protein coding genes of prokaryotes: (a) actual 
(QJO,d)): second highest probability of YRY(N),YRY after YRY(NI,YRY with a 
periodicity modulo 3 uniform; (b) before y = 0.1 transversions per base (Q46(0.1,d)): 
same probability for YRY(N),YRY and YRY(N),YRY; (c) before y = 0.2 transver- 
sions per base (QJ0.2,d)): highest probability of YRY(N),YRY with a periodicity 
modulo 3 nonuniform. The horizontal axis represents the number d of bases N 
between 2 YRY, d E [0,49], i.e., YRY(N),YRY. The vertical axis represents the 
YRY( N),YRY probability. 
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occurrences of the d-motif j in S. In order to count the occurrences of 
the d-motif j in the same conditions for all d, only the first e(s)-- 54 
( = e(s) -(49 + 6)+ 1) bases of s are examined (49 + 6 is the maximal 
length of the d-motif j). The occurrence probability o,,~(s) of the 
d-motif j for s is then equal to c,,~(s)/[ e(s)-541, i.e., the ratio of the 
counter by the total number of current bases read. The actual probabil- 
ity Q,(O,d) = Pj(~, d) of the d-motif j for F is finally equal to 

[C s t FO,,j(S)I/n(F). 

Remarks. The function d + QJO, d) giving the mean occurrence 
probability of the d-motif YRY(N),YRY in a gene population is our 
classical definition of the autocorrelation function. In order to have a 
sufficient number of occurrences of the d-motif j for d = 49, the 
probability Q,<O, d) is computed with sequences having a minimal length 
of 300 bases. 

3.2.3. Graphical representation of the autocorrelation function analyz- 
ing the probability of the d-motif YRY(N),YRY The autocorrelation 
function analyzing the probability of the d-motif YRY(N),YRY (Fig- 
ures 3-5) is represented as follows: (1) the abscissa shows the number d 
of bases N between 2 YRY by varying d between 0 and 49; and (2) the 
ordinate gives the probability of YRY(N),YRY. 

Figures 3a, 3b, 4a, and 5a show the actual probability Q46(0,d) of 
YRY(N),YRY in the protein genes of chloroplasts, mitochondria, 
eukaryotic nuclei, and prokaryotes, respectively. 

Figures 4b and 5b show the probability Qd6(0.1, d) of YRY(N),YRY 
before y = 0.1 transversions (after 0.1 back transversions) in the protein 
genes of eukaryotic nuclei and prokaryotes, respectively. 
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Figures 4c and 5c show the probability Q246(0.2,d) of YRY(N),YRY 
before y = 0.2 transversions (after 0.2 back transversions) in the protein 
genes of eukaryotic nuclei and prokaryotes, respectively. 

3.3. EFFECTS OF BACK TRANSVERSIONS 

3.3.1. Effects of back transversions in the eukaryotic nuclear protein 
coding genes. Unexpectedly, after 0.1 back transversions in the eukary- 
otic nuclear protein genes, YRY(N),YRY and YRY(N),YRY have 
nearly the same probability (Figure 4b) (the point at 6 being slightly less 
than the point at 0). Surprisingly, after 0.2 back transversions, there is 
the YRY(N),YRY preferential occurrence (Figure 4~). 

In order to analyze precisely the modifications of these two points in 
the inverse evolutionary sense, Figure 6a shows their probability varia- 
tion continuously in the transversion range [0,0.3]. At the beginning of 
the inverse substitution process, the probabilities of YRY(N),YRY and 
YRY(N),YRY decrease with a higher slope for YRY(N),YRY which 
crosses YRY(NI,YRY after 0.12 back transversions. Then, 

YRY(N),YRY decreases while YRY(N),YRY increases. 
The YRY(N),YRY preferential occurrence obtained after 0.2 back 

transversions is associated with a periodic&y modulo 3 nonuniform 
(Figure 4c) similar to the protein genes of chloroplasts and mitochon- 
dria. The probability of the bottom curve d = 1,2[3] gets closer to 0 
(Figure 4~). After 0.3 back transversions, there are some points in the 
bottom curve with negative values (data not shown) leading to a 
maximal number of transversions equal to 0.3 in the eukaryotic nuclear 
protein genes. 

3.3.2. Effects of back transversions in the prokalyotic protein coding 

genes. Surprisingly, the inverse substitution process in the prokaryotic 
protein genes is very similar to that of eukaryotic nuclei (Figures 5a-c). 
It also leads to the YRY(N),YRY preferential occurrence with a 
periodicity modulo 3 nonuniform after 0.2 back transversions (Figure 
5c). 

Figure 6b shows that the probabilities of YRY(N),YRY and 
YRY(N),YRY decrease with a higher slope for YRY(N),,YRY which 
crosses YRY(N),YRY after 0.09 back transversions. It seems that 
YRY(N),YRY does not increase, which is in contrast to the case of 
eukaryotic nuclei. However, by analyzing the probability variation of 
YRY(N),YRY in the transversion range [0,0.81, Figure 7 reveals that 
YRY(N),YRY in prokaryotes also increases but with a delay of about 
0.15 transversions compared to YRY(N),YRY in eukaryotic nuclei. 
The maximal number of transversions is also equal to 0.3 (data not 
shown), as in eukaryotic nuclei. It should be stressed that this maximal 
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FIG. 6. Probability variation of YRY(N),YRY (Q46(yr01) and YRY(N),YRY 
(Q46(yr6)) with the inverse substitution process continuously in the transversion 
range [0,0.3] for the protein coding genes of (a) eukaryotic nuclei: decrease of the 
YRY(Nl,YRY probability and increase of the YRY(NJ,YRY probability; (b) 
prokaryotes: decrease of the YRY(N),YRY probability. The horizontal axis repre- 
sents the number y of back transversions per base, y E [0,0.3]. The vertical axis 
represents the probabilities of YRY(N),YRY and YRY(N),YRY. 
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FIG. 7. Probability variation of YRY(N),YRY (Q4,(y,6)) with the inverse substi- 
tution process continuously in the transversion range [0,0.8] for the protein coding 
genes of eukaryotic nuclei and prokaryotes: increase of the YRY(N),YRY probabil- 
ity. The horizontal axis represents the number y of back transversions per base, 
y E [0,0.8]. The vertical axis represents the probability of YRY(N),YRY. 

value of 0.3 concerns a mean number of transversions, i.e., the case 
where all R/Y base sites are equiprobably substituted. However, as 
mentioned in [3], Section 3.3.2, some base sites can have a higher (and 
also lower) transversion rate compared to the average 0.3. This also 
explains that an analysis of the probability variation of some d-motifs in 
a transversion range exceeding [0,0.3], e.g., YRY(N),YRY in [0,0.8], is 
not irrelevant. 

4. DISCUSSION 

The autocorrelation function as defined in [l, 21 and Section 3.2 
avoids the decrease of probabilities when the number d of bases 
between the two motifs increases. Indeed, the side effect induced by the 
end of the gene is corrected in order to have the same occurrence of 
d-motifs in the gene, whatever the number d. Therefore, this autocorre- 
lation function is without bias; simple, as it is based on the frequency 
concept and with a graphical representation biologically interpretable; 
interesting, as it studies not only the frequency of two motifs but also 
the distance between them; general, as a motif is a particular case of a 
d-motif with two motifs separated by 0 base and as a gene is a particular 
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case of a population with one gene; and, finally, stable, as the d-motif 
probabilities are computed at the gene population level, i.e., popula- 
tions made of several hundreds of genes (consequence of the law of 
large numbers; see [3, p. 752, Sect. 2.3.31). 

These reasons explain why several methods were developed to com- 
pute this autocorrelation function (detailed in [ll]). For gene popula- 
tions or single genes, the autocorrelation function is computed with an 
occurrence counting algorithm (see Section 3.2.2). For simulated genes 
created either by an independent mixing or a Markov mixing of oligonu- 
cleotides, the autocorrelation function is computed with an approxi- 
mated simulation algorithm of linear complexity (function of d and of 
the number and the length of sequences created) and with an exact 
calculus algorithm of polynomial complexity (function of d and of the 
number and the length of oligonucleotides chosen). Both algorithms are 
necessary and complementary (see the complexity problems analyzed in 

[111X 
A new method based on analytical expressions allows us to study the 

autocorrelation function (the R/Y d-motif probabilities) after transver- 
sions (in the evolutionary sense; from the past to the present) and 
before transversions (after back transversions, in the inverse evolution- 
ary sense; from the present to the past). Different properties and a 
generalization to d-motifs with motifs of any base length are also 
derived from these formulas. The formulas obtained here are simple 
and general enough to be applied in a series of situations. In particular, 
the generalization of Pi(n) and Qi(y) (in the remarks of Sections 2.2 
and 2.3) with h, = 1 and A, = 2 (or A, = 2 and A, = 1) and with d = 0 
allows to study the R/Y codon probabilities under transversions in both 
evolutionary senses and to retrieve the particular formula derived in [5]. 

As the site and the order of previous substitutions are unknown, it is 
impossible to reproduce the effects of back substitutions in the nu- 
cleotide ordering of actual genes (unidirectional arrow in Figure 8). 
Unexpectedly, some statistical measures of the substitution process can 
be inverted, allowing to go backward in time. Indeed, if the substitution 
process is studied, not with the nucleotide ordering, but with probabili- 
ties (obtained from a good statistical function analyzing the nucleotide 
ordering, e.g., the autocorrelation function) then it can be inverted. 
Indeed, the formula P,(x) (1) giving the d-motif probabilities after x 
transversions can be inverted, and the inverse formula Q;(y) (5) gives 
the d-motif probabilities before y transversions. Therefore, the d-motif 
probabilities of primitive genes can be determined by applying the 
formula Qi(y) (5) with the d-motif probabilities Q,(O) of actual genes 
obtained from gene databases. Furthermore, the identification of non- 
random properties in the primitive genes, e.g., a d-motif with a maximal 
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FIG. 8. Study of the substitution process in the evolutionary sense (from the past 
to the present) and in the inverse evolutionary sense (from the present to the past) 
with probabilities. 

value or periodicities, implies some rules in the nucleotide ordering of 
these primitive genes (dashed arrow in Figure 81. Finally, this approach 
allows to determine the maximal number of transversions for a given 
gene population. 

The study of the substitution process confirms and improves the 
model of DNA sequence evolution recently proposed and according to 
which actual genes on the R/Y alphabet are the result of two succes- 
sive evolutionary genetic processes [31. 

The first genetic process is the mixing of a few nonrandom types of 
oligonucleotides (series less than 10 bases) leading to genes (series of 
several hundreds of bases) called primitive genes. In this model, it was 
proved in particular that (1) the mixing is independent by using initially 
a Markov mixing; and (2) so far, five oligonucleotides identified are 
involved in this mixing: first YRYRYR, YRYYRY, YRY(N), [3] and 
later also R8, Y8 [4]. The primitive genes resulting from this oligonu- 
cleotide mixing have the main (but not all) nonrandom statistical 
properties observed in actual genes on the R/Y alphabet, in particular 
the periodicities modulo 2 and 3 and the YRY(Nl,YRY preferential 
occurrence [3]. The modification of a base, a length or a probability in 
the mixing of one of these oligonucleotides leads to primitive genes 
without the properties observed in actual genes: there is no correlation 
between simulated genes and real genes. However, the mixing process is 
insufficient at least for two reasons: (1) a few nonrandom properties 
cannot be so far generated by a mixing process, in particular the 
perturbation with the second highest value of YRY(N),YRY after 
YRY(N),YRY with a periodic@ modulo 3; and (2) the nonrandom 
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properties generated by a mixing process have higher probabilities 
compared to those in actual genes. 

We had earlier proposed from a statistical point of view but without 
a proof, that a second genetic process related to the mutation process 
must be added after the mixing process (in [3, Sect. 1 and 3.3.21). In this 
article we offer the first proof that a substitution process improves the 
simulation of the genetic reality. While the mixing process mainly acts 
on the relative values in the simulated curves (on the curve shape) [3], 
the substitution process mainly acts on the absolute values in the 
simulated curves. Indeed, the global effect of transversions decreases as 
expected the probability variations between the top curve d = 0[3] and 
the bottom curve d = 1,2[3] and also inside each curve. For example, by 
analyzing the transversions in the evolutionary sense (i.e., from the past 
[Figures 4c and 5cl to the present [Figures 4a and 5al), the amplitude of 
the periodicity modulo 3 (mean probability difference between the top 
and bottom curves) decreases from 0.004 (Figures 4c and 5~) to 0.002 
(Figures 4a and 5a), the probability curve shape of YRY(N),YRY 
decreases (increases with back transversions [Figure 711, etc. However, 
some local effects cannot be intuitively predicted as a single substitution 
in a gene modifies several d-motifs, e.g., the probability curve shape of 
YRY(N),YRY which unexpectedly increases (decreases with back 
transversions [Figure 6]), etc. 

The application proposed here shows that the protein genes of both 
eukaryotic nuclei and prokaryotes have the YRY(N),YRY preferential 
occurrence with a periodicity modulo 3 after 0.2 back transversions such 
as that of the actual protein genes of chloroplasts and mitochondria. 
Therefore, more transversions have occurred in the protein genes of 
eukaryotic nuclei and prokaryotes than with chloroplasts and mitochon- 
dria. In the introns and 5’ regions of eukaryotic nuclei, the 
YRY(N),YRY preferential occurrence is hidden by large alternating 
R/Y stretches, whereas in the protein genes of eukaryotic nuclei and 
prokaryotes, it is hidden by random substitutions. 

The lower rate of transversions in protein genes of organelles (chlo- 
roplasts and mitochondria) compared to eukaryotic nuclei and prokary- 
otes may be related to a globally lower rate of substitutions in organelle 
genes. Contrary to our approach, in which substitutions studied by 
transversions are analyzed in gene populations (e.g., all the mitochon- 
dria), other methods, experimental (e.g., restriction-enzyme mapping) 
and statistical, also support the previous assumption. The method of Li 
et al. [12] and others, in which substitutions classified as nonsynony- 
mous and synonymous are analyzed in a few genes, showed that [13, p. 
86; 14, p. 142; 15, 161 (1) in plants, the synonymous rates in organelle 
genes are lower than those in nuclear genes (the synonymous rates of 
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plant mitochondrial, chloroplast, and plant nuclear genes are in the 
approximate ratio 1: 3 : 12); (2) in plants, the nonsynonymous rates in 
organelle genes are lower than those in nuclear genes (the nonsynony- 
mous rates of plant mitochondrial, chloroplast, and plant nuclear genes 
are in the approximate ratio 1: 1: > 2); (3) the synonymous rates in 
plant organelle genes are lower than those in mammalian nuclear genes 
(plant mitochondrial, primate nuclear, and rodent nuclear genes are in 
the approximate ratio 1: 2-5 : 10-20; chloroplast, primate nuclear, and 
rodent nuclear genes are in the approximate ratio 1: 1: 4); and (4) the 
synonymous rates in plant nuclear genes are similar to those in mam- 
malian nuclear genes. However, mitochondrial genes of mammals, in 
contrast to those of plants, have a higher rate of substitutions than in 
mammalian nuclear genes but mainly related to transitions 117, 181. 
Therefore, the transversion rate in mammalian mitochondrial genes 
could well be of the same order as that in plant mitochondrial genes. In 
addition, the mitochondrial gene population used here may have a 
lower rate of substitutions (and more certainly for transversions) than in 
(plant and/or mammalian) nuclear genes as the mitochondrial popula- 
tion contains mammalian as well as plant genes. In summary, previous 
studies may support the observation obtained here with a lower rate of 
transversions in protein genes of organelles than of nuclei. 

The lower rate of substitutions in organelle genes may be explained 
by the existence of several space and functional constraints at the DNA 
sequence level. First, the number of protein genes in chloroplasts 
(about 80) and mitochondria (about 20) is very small compared to the 
one in eukaryotic nuclei and prokaryotes (estimated between 1000 and 
3000 in Eschetichiu coli). Second, each organelle gene is often present 
in a single copy per genome. Third, the organelle genes code for 
proteins related to only a few functions: photosynthesis, respiration, and 
transcription and translation needed to express those genes. Fourth, the 
expression of these organelle genes is often optimized: (1) in animal 
mitochondria, the protein genes have neither 5’ nor 3’ regions: they 
simply begin directly with the initiator codon for protein synthesis and 
end with a partial terminator codon (T or TA); (2) several mitochondrial 
protein genes overlap, e.g., ATPase subunits 6 and 8, cytochrome 
oxidase subunit 2, and an adjacent ORF, etc. (reviewed in [19]). How- 
ever, the reduced rate of substitutions at the DNA sequence level can 
be compensated by different molecular processes at the RNA level 
which are specific to organelles: (1) a genetic code with variations from 
the universal code in mammalian mitochondria [20]; (2) a particular 
translating code in chloroplasts [20]; (3) RNA editing by insertion 
and/or deletion of nucleotides in mitochondrial transcripts of try- 
panosomes [21] and of a slime mold [22]; (4) RNA editing by polyadeny- 
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lation generating UAA stop codons in transcripts of vertebrate mito- 
chondria [23]; and (5) RNA editing by transition in plant mitochondrial 
transcripts [24, 251 and recently also observed in chloroplasts transcripts 
[26, 271, etc. 

The numerical results of the application (the difference number 0.2, 
the maximal number 0.3) provide new information about gene mutation 
as they are obtained with an analytical expression analyzing back 
transversions in gene populations. These results have to be added to the 
list of other rates analyzing gene mutation [6, 7, 13, 141: transition, 
synonymous and nonsynonymous rates, rates expressed in function of 
the time, etc. 

The formulas Z’,(X) and Q,(y) are simple enough to be directly used. 
We are nevertheless currently implementing these analytical expres- 
sions and their generalization in the Analysis of Gene Evolution (AGE) 
software Ill]. 
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