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A circular code has been identi"ed in the protein (coding) genes of both eukaryotes and
prokaryotes by using a statistical method called trinucleotide frequency (TF) method [Arquès
& Michel (1996). J. theor. Biol. 182, 45}58]. Recently, a probabilistic model based on the
nucleotide frequencies with a hypothesis of absence of correlation between successive bases on
a DNA strand, has been proposed by Koch & Lehmann [(1997). J. theor. Biol. 189, 171}174]
for constructing some particular circular codes. Their interesting method which we call here
nucleotide frequency (NF) method, reveals several limits for constructing the circular code
observed with protein genes.
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1. Introduction

This section is divided into two parts. The "rst
part summarizes the results of the circular code
(X

0
) identi"ed in the protein genes of both

eukaryotes and prokaryotes. The second part
recalls the probabilistic model of Koch & Leh-
mann (1997) based on the nucleotide frequency
method (NF method).

1.1. THE CIRCULAR CODE X
0

The concept of code &&without commas'' intro-
duced by Crick et al. (1957) for the protein (cod-
ing) genes, is a code readable in only one out of
three frames. Such a theoretical code without
commas, called circular code in the theory of
codes (e.g. BeH al, 1993; Berstel & Perrin, 1985),
is a particular set X of trinucleotides so that a
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concatenation (a series) of trinucleotides of X,
leads to sequences which cannot be decomposed in
another frame with a concatenation of trinucleo-
tides of X.

For example, suppose that X is the following
set of trinucleotides: X"MAAC, AAT, ACC,
ATC, ATT, CAG, CTC, CTG, GAA, GAC,
GAG, GAT, GCC, GGC, GGT, GTA, GTC,
GTT, TAC, TTCN. Some trinucleotides of X are
randomly concatenated, for example as follows:

2CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,
GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,
TTC,ACC,ATC2

The commas between the trinucleotides show
the frame of construction (reading frame in bio-
logy). Suppose now that the commas are &&lost''
leading to the sequence:

2CAGGCCTTCAATACCACCCAGG-
AAGAGGTAATTACCAATGTAAACTACT-
TCACCATC2
( 2001 Academic Press
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The problem is to retrieve the original frame
of construction. There are three obvious possi-
bilities:

2C,AGG,CCT,TCA,ATA,CCA,CCC,AGG,
AAG,AGG,TAA,TTA,CCA,ATG,TAA,ACT,
ACT,TCA,CCA,TC2

2CA,GGC,CTT,CAA,TAC,CAC,CCA,GGA,
AGA,GGT,AAT,TAC,CAA,TGT,AAA,CTA,
CTT,CAC,CAT,C2

2CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,
GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,
TTC,ACC,ATC2

If the set X of trinucleotides is a circular code,
then there is a unique solution:

2CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,
GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,
TTC,ACC,ATC2

This unique solution is obtained by choosing
a window (su$ciently large) in any position in the
sequence and then, to verify the belonging of the
trinucleotides of the window to X:
2CAGGCCTTCAATACCACCCAGGAAG AGG,TAATTACCAAT
-------------------------------

-------------------------------
GTAAACTACTTCACCATC2

2CAGGCCTTCAATACCACCCAGGAAG A,GGT,AAT,TAC,CAA,
-------------------------------

-------------------------------
TGTAAACTACTTCACCATC2

2CAGGCCTTCAATACCACCCAGGAAG AG,GTA,ATT,ACC,AA
-------------------------------

-------------------------------
T,GTA,AAC,TAC,TTC,ACC,ATC,2
The "rst decomposition proposed is rejected
immediately as the "rst trinucleotide AGG in
the window does not belong to X. The second
decomposition proposed is rejected with a win-
dow of 13 nucleotides. Indeed, the "rst nucleotide
A in the window may belong to several trinuc-
leotides of X, e.g. GTA. The trinucleotides GGT,
AAT and TAC following A belong to X.
The next trinucleotide CAA does not belong
to X as the 13th nucleotide A (from the beginning
of the window) di!ers from the unique possibility
G of CAG belonging to X. The third decomposi-
tion is the original one as all the trinucleotides
in the window belong to X. The original de-
composition of the sequence is automatically
deduced.
Such a code was proposed by Crick et al.
(1957) in order to explain how the reading of
a series of nucleotides in the protein genes could
code for the amino acids constituting the pro-
teins. The two problems stressed were: why are
there more trinucleotides than amino acids and
how to choose the reading frame? Crick et al.
(1957) have then proposed that only 20 among 64
trinucleotides code for the 20 amino acids. How-
ever, the determination of a set of 20 trinucleo-
tides forming a circular code X depends on
a great number of constraints.

(i) A trinucleotide with identical nucleotides
(AAA, CCC, GGG or TTT) must be excluded
from such a code. Indeed, the concatenation of
AAA with itself does not allow to retrieve the
reading (original) frame as there are three possible
decompositions: 2AAA,AAA,AAA,2, 2A,
AAA,AAA,AA2 and 2AA,AAA,AAA,A2

(ii) Two trinucleotides related to circular per-
mutation, e.g. ATC and TCA, must be excluded
from such a code. Indeed, the concatenation
of ATC with itself does not allow the retrieval of
the reading (original) frame as there are two possi-
ble decompositions: 2ATC,ATC,ATC,2 and

2A,TCA,TCA,TC2

Therefore, by excluding AAA, CCC, GGG and
TTT and by gathering the 60 remaining trinuc-
leotides in 20 classes of three trinucleotides so
that, in each class, the three trinucleotides are
deduced from each other by circular permuta-
tions, e.g. ATC, TCA and CAT, a circular code
has only one trinucleotide per class and therefore
contains at most 20 trinucleotides (maximal
circular code). This trinucleotide number is
identical to the amino acid number leading to
a circular code assigning one trinucleotide per
amino acid.
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In the late 1950s, no set of 20 trinucleotides
leading to a circular code has been found.
Furthermore, the two discoveries that the trinuc-
leotide TTT, an &&excluded'' trinucleotide in the
concept of circular code, codes for phenylalanine
(Nirenberg & Matthaei, 1961) and that the pro-
tein genes are placed in the reading frame with
a particular trinucleotide, namely the start
trinucleotide ATG, have led to giving up of the
concept of circular code on the alphabet
MA,C,G,TN. For several biological reasons, in par-
ticular the interaction between mRNA and
tRNA, the concept of circular code is resumed
later on the alphabet MR,YN (R"purine"A or
G, Y"pyrimidine"C or T) with two trinuc-
leotide models for the primitive protein genes:
RRY (Crick et al., 1976) and RNY (N"R or Y)
(Eigen & Schuster, 1978).

Unexpectedly, a maximal circular code has re-
cently been identi"ed in the protein genes of both
eukaryotes and prokaryotes on the alphabet
MA,C,G,TN (Arquès & Michel, 1996). This circular
code has been obtained by two methods.

(i) By computing the occurrence frequencies of
the 64 trinucleotides AAA,2,TTT in the three
frames of protein genes and then, by assigning each
trinucleotide to the frame associated with its high-
est frequency (Arquès & Michel, 1996). This trinuc-
leotide frequency method is called TF method.

(ii) By computing the 12 288 (3]642) autocor-
relation functions analysing the probability that
a trinucleotide in any frame occurs any i bases
N after a trinucleotide in a given frame of protein
genes and then, by classifying these autocorrela-
tion functions according to their modulo 3
periodicity for deducing a frame for each trinucl-
eotide (Arquès & Michel, 1997a).

The maximal circular code identi"ed is the set
X

0
"MAAC,AAT,ACC,ATC,ATT,CAG,CTC,

CTG,GAA,GAC,GAG,GAT,GCC,GGC,GGT,
GTA,GTC,GTT,TAC,TTCN of 20 trinucleotides
in frame 0 of protein genes (reading frame).
Furthermore, the two sets X

1
and X

2
of 20

trinucleotides identi"ed in the frames 1 and 2,
respectively (frames 1 and 2 being the frame
0 shifted by 1 and 2 nucleotides, respectively,
in the 5@-3@ direction), by these two methods,
are also maximal circular codes [Table 1(a)].
These three circular codes have several important
properties.

(i) Circularity: X
0
generates X

1
by one circular

permutation and X
2

by another circular permu-
tation (one and two circular permutations of each
trinucleotide of X

0
lead to the trinucleotides of

X
1

and X
2
, respectively) [Table 1(b)].

(ii) Complementarity: X
0

is self-complement-
ary (10 trinucleotides of X

0
are complementary

to the 10 other trinucleotides of X
0
) and, X

1
and

X
2

are complementary to each other (the 20
trinucleotides of X

1
are complementary to the 20

trinucleotides of X
2
) [Table 1(c)]. Note that this

property is also veri"ed with ¹
0
"X

0
X

MAAA,TTTN and ¹
1
"X

1
XMCCCN and ¹

2
"

X
2
XMGGGN [(Table 1(c)].

(iii) Rarity: the occurrence probability of X
0

is
equal to 6]10~8. As there are 20 classes of three
trinucleotides (see above), the number of poten-
tial circular codes is 320"3 486 784401. The
computed number of complementary circular
codes with two shifted circular codes (called
C3 codes), such as X

0
, is 216. Therefore, its prob-

ability is 216/320"6]10~8.
(iv) Flexibility:

f the lengths of the minimal windows to retrieve
automatically the frames 0, 1 and 2 with the
three circular codes X

0
, X

1
and X

2
, respec-

tively, are all equal to 13 nucleotides and
represent the largest window length among the
216 C3 codes.

f the frequency of misplaced trinucleotides in the
shifted frames is equal to 24.6%. If the trinuc-
leotides of X are randomly concatenated, for
example as follows:

2GAA , GAG ,GTA ,GTA ,ACC ,AAT ,
GTA,CTC,TAC,TTC,ACC,ATC2

then, the trinucleotides in frame 1:

2G,AAG,AGG,TAG,TAA,CCA,ATG,
TAC,TCT,ACT,TCA,CCA,TC2

and the trinucleotides in frame 2:

2GA,AGA,GGT,AGT,AAC,CAA,TGT,
ACT, CTA, CTT,CAC,CAT,C2

mainly belong to X
1

and X
2
, respectively.

A few trinucleotides are misplaced in the shif-
ted frames. With this example, in frame 1, nine
trinucleotides belong to X

1
, one trinucleotide

(TAC) to X
0

and one trinucleotide (TAA) to



TABLE 1
(a) ¸ist per frame and in lexicographical order of the trinucleotides of the
complementary circular code identi,ed in protein coding genes of eu-
karyotes and prokaryotes (Arquès & Michel, 1996). ¹hree subsets of
trinucleotides can be identi,ed: ¹

0
"X

0
XMAAA,TTTN in frame 0,

¹
1
"X

1
XMCCCN in frame 1 and ¹

2
XMGGGN in frame 2. ¹he three sets

X
0
, X

1
and X

2
of 20 trinucleotides are maximal circular codes. (b) Circu-

larity property with the three circular codes X
0
, X

1
and X

2
of 20

trinucleotides identi,ed in protein coding genes of eukaryotes and
prokaryotes [¹able 1(a)]. (c) Complementarity property with the three
circular codes X

0
, X

1
and X

2
of 20 trinucleotides identi,ed in protein

coding genes of eukaryotes and prokaryotes [¹able 1(a)]. ¹his property is
also veri,ed with ¹

0
(AAA and TTT) and, ¹

1
and ¹

2
(CCC and GGG)

0T : AAA AAC AAT ACC ATC ATT CAG CTC CTG GAA GAC GAG GAT GCC GGC GGT GTA GTC GTT TAC TTC TTT 

1T : AAG ACA ACG ACT AGCAGG ATA ATG CCA CCCCCG GCG GTG TAG TCA TCC TCG TCT TGC TTA TTG

2T : AGA AGT CAA CAC CAT CCT CGA CGCCGG CGT CTA CTT GCA GCT GGAGGG TAA TAT TGA TGG TGT

0X : AAC AAT ACC ATC ATT CAG CTC CTG GAA GAC GAG GAT GCC GGC GGT GTA GTC GTT TAC TTC

1X : ACA ATA CCA TCA TTA AGC TCC TGC AAG ACG AGG ATG CCG GCG GTG TAG TCG TTG ACT TCT

2X : CAA TAA CAC CAT TAT GCA CCT GCT AGA CGA GGA TGA CGC CGG TGG AGT CGT TGT CTA CTT

0T : AAA AAC AAT ACC ATC CAG CTC GAA GAC GCC GTA 

0T : TTT GTT ATT GGT GAT CTG GAG TTC GTC GGC TAC 

1T : AAG ACA ACG ACT AGC AGG ATA ATG CCA CCC CCG GCG GTG TAG TCA TCC TCG TCT TGC TTA TTG

2T : CTT TGT CGT AGT GCT CCT TAT CAT TGG GGG CGG CGC CAC CTA TGA GGA CGA AGA GCA TAA CAA 

(a)

(b)

(c)
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X
2
. In frame 2, eight trinucleotides belong to

X
2
, two trinucleotides (GGT, AAC) to X

0
and

one trinucleotide (ACT) to X
1
. By computing

exactly, the average frequencies of misplaced
trinucleotides in frame 1 are 11.9% for X

0
and

12.7% for X
2
. In frame 2, the average frequen-

cies of misplaced trinucleotides are 11.9% for
X

0
and 12.7% for X

1
. The complementarity

property explains on the one hand the fre-
quency equality of X

0
in frames 1 and 2 and on

the other, the frequency equality of X
2
in frame

1 and X
1

in frame 2. The sum of percentages of
misplaced trinucleotides in frame 1 (X

0
and

X
2
) is equal to the sum of percentages of mis-

placed trinucleotides in frame 2 (X
0

and X
1
)

and is equal to 24.6%. This value is close to
the highest frequency (27.9%) of misplaced
trinucleotides among the 216 C3 codes.

f the four types of nucleotides occur in the three
trinucleotide sites with the three circular codes
X

0
, X

1
and X

2
[Table 1(a)].
(v) Evolutionary: an evolutionary analytical
model at three parameters (p,q, t ) based on an
independent mixing of the 20 trinucleotides of X

0
with equiprobability (1/20) followed by t+4 sub-
stitutions per trinucleotide according to the pro-
portions p+0.1, q+0.1 and r"1!p!q+0.8
in the three trinucleotide sites, respectively,
retrieves the frequencies of X

0
, X

1
and

X
2

observed in the three frames of protein
genes.

The proof that X
0
, X

1
and X

2
are circular

codes, the detailed explanation of the properties
(i}iv) and the di!erent biological consequences, in
particular on the two-letter genetic alphabets, the
genetic code and the amino acid frequencies in
proteins, are given in Arquès & Michel (1996,
1997a). Property (v) is described in Arquès et al.
(1998, 1999).

Note: a non-complementary circular code has
recently been identi"ed in the mitochondrial pro-
tein genes (Arquès & Michel, 1997b).



TABLE 2
(a) Nucleotide frequencies p

i
(h) at position i3M1,2,3N of the reading frame for the prokaryotes (Koch

& ¸ehmann, 1997, ¹able 1). (b) ¹hree self-complementary circular codes generated by the NF method
with the frequencies of ¹able 2(a) modi,ed according to relation (3): p

1
(A)"p

3
(T), p

1
(C)"p

3
(G),

p
1
(G)"p

3
(C), p

1
(T)"p

3
(A), p

2
(A)"p

2
(T), and p

2
(C)"p

2
(G)

Base θ  θ1p ( )  θ2p ( )  θ3p ( )

A 0.276 0.315 0.222 

T 0.166 0.285 0.268 

C 0.204 0.228 0.268 

G 0.354 0.172 0.242 

Circular codes p1(A) p1(C) p1(G) p1(T) p2(A) p2(C) 
AAC AAT ACC AGC ATC ATT CTC GAA GAC GAG GAT GCC GCT GGC GGT GTA GTC GTT TAC TTC 0.276 0.204 0.354 0.166 0.285 0.215 
AAC AAG AAT ATC ATT CAC CAG CTC CTG CTT GAC GAG GAT GCC GGC GTA GTC GTG GTT TAC 0.268 0.242 0.268 0.222 0.285 0.215 
AAC AAG AAT AGC ATC ATT CAC CTC CTT GAC GAG GAT GCC GCT GGC GTA GTC GTG GTT TAC 0.272 0.223 0.311 0.194 0.300 0.200 

(a)

(b)
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1.2. THE NF METHOD

Koch & Lehmann (1997, p. 171) have recently
suggested that the self-complementary circular
code X

0
observed in protein genes could be ex-

plained by a method for generating circular codes
from nucleotide frequencies. This method called
here as the NF method, is brie#y recalled by
retaining the same notations.

Let p
i
(h) be the occurrence probability of

a given base h3MA,C,G,TN at position i3M1,2,3N
in a trinucleotide (triplet) observed in a DNA
strand read in frame 0. By supposing that there is
no correlation between successive bases on
a DNA strand, the probability of "nding the
triplet abc in the frame 0 is given by the probabil-
ities product p

1
(a)p

2
(b)p

3
(c) (independent prob-

abilities). The belonging of the triplet abc to
a preferential set >

0
of triplets in frame 0 is then

equivalent to the following two probability
inequalities:

p
1
(a)p

2
(b)p

3
(c)'p

1
(c)p

2
(a)p

3
(b) (1)

and

p
1
(a)p

2
(b)p

3
(c)'p

1
(b)p

2
(c)p

3
(a). (2)

Similar probability inequalities imply that the
triplet bca (resp. cab) belongs to the preferential
set >

1
(resp. >

2
) of triplets in frame 1 (resp. 2).

Koch & Lehmann (1997, p. 173) prove that
a preferential set generated from any set of prob-
abilities p

i
(h) with this method, is a circular code.
Koch & Lehmann (1997, p. 172) also show
that, if the probabilities p

i
(h) verify the relation

p
1
(h)"p

3
(C(h)) and p

2
(h)"p

2
(C(h)), (3)

where C(h) denote the complementary base of h,
then the circular code >

0
is necessarily self-

complementary and the two permutated circular
codes >

1
and >

2
are complementary (called C3

codes in Arquès & Michel, 1996).
Table 1 in Koch & Lehmann (1997) gives the

12 nucleotide observed frequencies p
i
(h) of a base

h3MA,C,G,TN at position i3M1,2,3N of the read-
ing frame for the prokaryotes. These data
have been obtained from the 44-th release
of the prokaryotic EMBL database. This Table 1
is recalled in this paper with the Table 2(a).
These 12 probabilities with the NF method lead
to a new circular code >

0
"MAAT, AAC, ATT,

ATC, ACT, CAC, CTT, CTC, GAA, GAT,
GAC, GAG, GTA, GTT, GTC, GTG, GCA,
GCT, GCC, GCGN. This code >

0
contains 13

trinucleotides of the code X
0

[Table 1(a)].

2. Method and Results

2.1. THE NF METHOD CANNOT GENERATE

THE CIRCULAR CODE X
0

2.1.1. ¹he NF Method Does not Generate a
;nique Self-complementary Circular Code from

the Observed Probabilities

The approach of Koch & Lehmann (1997) tries
to link the self-complementary code X

0
and the
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NF method. However, the code >
0

obtained by
the NF method from the observed probabilities
p
i
(h) of a base h3MA,C,G,TN at position i3M1,2,

3N of the reading frame for the prokaryotes is not
self-complementary as, for example, ACT3>

0
but C(ACT)"AGTN>

0
. So, this section is de-

voted to obtain a self-complementary circular
code with the NF method from probabilities
closed to the observed ones.

If the 12 probabilities p
i
(h) verify relation (3),

then the circular code computed by the NF
method is a self-complementary code. However,
relation (3) which contains six probability equali-
ties, cannot be easily used with observed prob-
abilities.

Koch & Lehmann (1997, p. 172) have men-
tioned that the 12 probabilities p

i
(h) in Table 2(a)

do not precisely verify relation (3) and then,
no self-complementary circular code has been
proposed.

Furthermore, the NF method generates several
self-complementary circular codes if the prob-
abilities of Table 2(a) are slightly modi"ed for
verifying relation (3). Three examples of such self-
complementary circular codes are presented in
Table 2(b). The "rst circular code is obtained with
observed frequencies from the "rst and second
columns of Table 2(a): p

1
(A)"p

3
(T)"0.276,

p
1
(C)"p

3
(G)"0.204, p

1
(G)"p

3
(C)"0.354,

p
1
(T)"p

3
(A)"0.166, p

2
(A)"p

2
(T)"0.285,

and p
2
(C)"p

2
(G)"(1}2]0.285)/2. The second

circular code is obtained with observed frequen-
cies from the second and third columns of Table
2(a): p

1
(A)"p

3
(T)"0.268, p

1
(C)"p

3
(G)"

0.242, p
1
(G)"p

3
(C)"0.268, p

1
(T)"p

3
(A)"

0.222, p
2
(A)"p

2
(T)"0.285, and p

2
(C)"

p
2
(G)"(1}2]0.285)/2. The third circular code is

obtained with average frequencies from Table
2(a): p

1
(A)"p

3
(T)"(0.276#0.268)/2"0.272,

p
1
(C)"p

3
(G)"(0.204#0.242)/2"0.223,

p
1
(G)"p

3
(C)"(0.354#0.268)/2"0.311,

p
1
(T)"p

3
(A)"(0.166#0.222)/2"0.194,

p
2
(A)"p

2
(T)"(0.315#0.285)/2"0.3, and

p
2
(C)"p

2
(G)"(0.228#0.172)/2"0.2.

In summary, the NF method is not well
adapted to reveal a unique self-complementary
circular code. Furthermore, in the next section we
shall prove that the NF method cannot generate
the self-complementary circular code X

0
which

has been identi"ed in the protein genes of both
eukaryotes and prokaryotes (Arquès & Michel,
1996).

2.1.2. Proof that the NF Method Cannot
Generate the Circular Code X

0
This section presents a mathematical proof

that the NF method cannot generate the circular
code X

0
. The idea of this proof is the following

one. We take the hypothesis that a circular code
X containing the three triplets abc, ddb and cad
where a,b,c,d3MA,C,G,TN is generated by the NF
method from the occurrence probabilities p

i
(h) of

a base h3MA,C,G,TN at the position i3M1,2,3N.
Then, this hypothesis is refuted by considering
several probability inequalities associated with
the three triplets considered. As the circular code
X

0
contains such three triplets (ATC, GGT,

CAG), then X
0

cannot be generated by the NF
method.

The existence of three probabilities p
i
(h)

generating X by the NF method is taken as
a hypothesis. According to inequality (1) of the
NF method, the triplet abc belonging to X leads
to the following probability inequality:

p
1
(a)p

2
(b)p

3
(c)'p

1
(c)p

2
(a)p

3
(b). (4)

According to inequality (2) of the NF method,
the triplet ddb belonging to X leads to the follow-
ing probability inequality:

p
1
(d)p

2
(d)p

3
(b)'p

1
(d)p

2
(b)p

3
(d). (5)

Clearly, p
1
(d)'0 otherwise inequality (5) can-

not be veri"ed. Therefore, by simplifying eqn (5)

p
2
(d)p

3
(b)'p

2
(b)p

3
(d). (6)

According to inequality (2) of the NF method, the
triplet cad belonging to X leads to the following
probability inequality:

p
1
(c)p

2
(a)p

3
(d)'p

1
(a)p

2
(d)p

3
(c). (7)

Clearly, p
3
(d)'0 otherwise inequality (7) cannot

be veri"ed. By rewriting eqn (4) as follows:

p
1
(a)p

2
(b)p

3
(c)'p

1
(c)p

2
(a)p

3
(d)]p

3
(b)/p

3
(d).

(8)
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By using eqn (7) with the second member of eqn
(8), we obtain

p
1
(a)p

2
(b)p

3
(c)'p

1
(a)p

2
(d)p

3
(c)]p

3
(b)/p

3
(d).

(9)

As p
1
(a)'0 and p

3
(c)'0, inequality (9) can be

simpli"ed as follows:

p
2
(b)'p

2
(d)]p

3
(b)/p

3
(d)

i.e.
p
2
(b)p

3
(d)'p

2
(d)p

3
(b). (10)

Inequality (10) is in contradiction with inequal-
ity (6). Therefore, the hypothesis of the existence
of three probabilities p

i
(h) generating X is

refuted.
This proof can be applied to the circular code

X
0

containing the three triplets ATC, GGT and
CAG which follow the pattern abc, ddb and cad.
Therefore, the circular code X

0
cannot be gener-

ated by the NF method.

2.1.3. Development of ¹wo Algorithms in
Complement of the Proof

The previous section has proved that the self-
complementary circular code X

0
cannot be gen-

erated by the NF method. This section consists in
determining all the self-complementary circular
codes which can be generated by this NF
method.

The "rst algorithm A1 developed allows the
determination of a set S of self-complementary
circular codes > based on the NF method. The
NF method implies the following property with
each code > of S

Y
. The two sets of 20 words

obtained by circular permutations of a code >,
are complementary circular codes (Koch & Leh-
mann, 1997, p. 173). Such codes > are called C3
codes (Arquès & Michel, 1996).

The principle of the algorithm A1 consists in
varying the probabilities p

i
(h) of the four bases at

the three positions in the range [0,1] according to
relation (3). For each probability variation step,
the algorithm A1 computes a C3 code by using
the NF method and tests whether this C3 code
has been previously generated. Indeed, several
sets of probabilities p

i
(h) can lead to the same C3

codes. By varying the probabilities p
i
(h) with
steps becoming smaller and smaller, the number
of C3 codes > in S

Y
remains constant and equal

to 88. These 88 codes > are listed in Table 3.
The algorithm A1 generates 88 C3 codes >.

However, the #ower automaton method identi"-
es 216 C3 codes (Arquès & Michel, 1996). In
order to explain the 216!88"128 remaining
C3 codes, we extend the proof (ii) based on the
pattern P

0
"Mabc,ddb,cadN to its two circular

permuted patterns P
1
"Mbca,dbd,adcN and

P
2
"Mcab,bdd,dcaN. Any circular code containing

the pattern P
0

cannot be generated by the NF
method (Section 2.1.2). Similarly the proof obtained
also shows that any circular code containing a cir-
cular permuted pattern P

1
or P

2
, cannot be gener-

ated by the NF method. The algorithm A2
developed determines the C3 codes among the 216
ones which contains at least one of the three pre-
vious patterns. There are exactly 128 such C3 codes.
Therefore, the algorithm A2 con"rms the number
88 of C3 codes> determined by the algorithm A1
whatever the probability variation step used.

In summary, the number of C3 codes which
can be generated by the NF method is exactly 88.
It is important to stress that the 128 other C3
codes cannot be generated from any sets of prob-
abilities, even probabilities which do not verify
relation (3), as the proof obtained does not make
any hypothesis on the probabilities.

2.2. REMARKS ON THE HYPOTHESIS OF NO

CORRELATION BETWEEN SUCCESSIVE BASES

USED IN THE NF METHOD

The hypothesis of no correlation between suc-
cessive bases has been justi"ed by the entropy
approach (Koch & Lehmann, 1997, p. 173).
We brie#y recall the elementary principles of the
entropy.

2.2.1. Method

Let X be a discrete random variable taking the
value a

i
3MA,C,G,TN with the probability P(a

i
)"

Pr(X"a
i
). The entropy H(X) of the discrete

random variable X can be de"ned, in a simple
approach, by the measure of the average informa-
tion quantity associated with this variable X, i.e.

H(X)"!

4
+
i/1

P(a
i
) log

2
P(a

i
).



TABLE 3
¸ist of the 88 self-complementary circular codes generated by the NF method according to the six
probabilities p

1
(A)"p

3
(T), p

1
(C)"p

3
(G), p

1
(G)"p

3
(C), p

1
(T)"p

3
(A), p

2
(A)"p

2
(T) and

p
2
(C)"p

2
(G)

 

Circular codes p1(A) p1(C) p1(G) p1(T) p2(A) p2(C) 
ACA AGA CCA CGA GCA GCC GGA GGC GTA TAA TAC TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.06 0.06 0.12 0.76 0.06 0.44 
ACA CCA CGA GAA GCA GCC GGA GGC GTA TAA TAC TCA TCC TCG TGA TGC TGG TGT TTA TTC 0.06 0.06 0.12 0.76 0.18 0.32 
CAA CCA CGA GAA GCA GCC GGA GGC GTA TAA TAC TCA TCC TCG TGA TGC TGG TTA TTC TTG 0.06 0.06 0.12 0.76 0.30 0.20 
CAA CCA GAA GAC GCA GCC GGA GGC GTA GTC TAA TAC TCA TCC TGA TGC TGG TTA TTC TTG 0.06 0.06 0.12 0.76 0.42 0.08 
CAA CAC CTC GAA GAC GAG GCA GCC GGC GTA GTC GTG TAA TAC TCA TGA TGC TTA TTC TTG 0.06 0.06 0.12 0.76 0.48 0.02 
CAA CAC GAA GAC GCA GCC GGA GGC GTA GTC GTG TAA TAC TCA TCC TGA TGC TTA TTC TTG 0.06 0.06 0.18 0.70 0.42 0.08 
ACA CCA GAA GAC GCA GCC GGA GGC GTA GTC TAA TAC TCA TCC TGA TGC TGG TGT TTA TTC 0.06 0.06 0.24 0.64 0.24 0.26 
ATC CAA CAC CTC GAA GAC GAG GAT GCA GCC GGC GTA GTC GTG TAA TAC TGC TTA TTC TTG 0.06 0.06 0.30 0.58 0.48 0.02 
ACA ACC GAA GAC GCA GCC GGA GGC GGT GTA GTC TAA TAC TCA TCC TGA TGC TGT TTA TTC 0.06 0.06 0.48 0.40 0.06 0.44 
AAC ACC GAA GAC GCA GCC GGA GGC GGT GTA GTC GTT TAA TAC TCA TCC TGA TGC TTA TTC 0.06 0.06 0.48 0.40 0.24 0.26 
AAC CAC GAA GAC GCA GCC GGA GGC GTA GTC GTG GTT TAA TAC TCA TCC TGA TGC TTA TTC 0.06 0.06 0.48 0.40 0.30 0.20 
AAC ATC CAC CTC GAA GAC GAG GAT GCA GCC GGC GTA GTC GTG GTT TAA TAC TGC TTA TTC 0.06 0.06 0.48 0.40 0.48 0.02 
AAC ATC CAC GAA GAC GAT GCA GCC GGA GGC GTA GTC GTG GTT TAA TAC TCC TGC TTA TTC 0.06 0.06 0.54 0.34 0.42 0.08 
AAC ACC ATC GAA GAC GAT GCA GCC GGA GGC GGT GTA GTC GTT TAA TAC TCC TGC TTA TTC 0.06 0.06 0.72 0.16 0.24 0.26 
AAC ATC CAC CAG CTC CTG GAA GAC GAG GAT GCC GGC GTA GTC GTG GTT TAA TAC TTA TTC 0.06 0.06 0.78 0.10 0.48 0.02 
AAC AAT ACC AGC ATC ATT GAA GAC GAT GCC GCT GGA GGC GGT GTA GTC GTT TAC TCC TTC 0.06 0.06 0.84 0.04 0.06 0.44 
AAC AAT ACC AGC ATC ATT CTC GAA GAC GAG GAT GCC GCT GGC GGT GTA GTC GTT TAC TTC 0.06 0.06 0.84 0.04 0.24 0.26 
AAC AAT AGC ATC ATT CAC CTC GAA GAC GAG GAT GCC GCT GGC GTA GTC GTG GTT TAC TTC 0.06 0.06 0.84 0.04 0.30 0.20 
AAC AAT ATC ATT CAC CAG CTC CTG GAA GAC GAG GAT GCC GGC GTA GTC GTG GTT TAC TTC 0.06 0.06 0.84 0.04 0.48 0.02 
ACA AGA CCA CCG CGA CGG CTA GCA GGA TAA TAG TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.06 0.12 0.06 0.76 0.06 0.44 
AGA CAA CCA CCG CGA CGG CTA GCA GGA TAA TAG TCA TCC TCG TCT TGA TGC TGG TTA TTG 0.06 0.12 0.06 0.76 0.18 0.32 
CAA CCA CCG CGA CGG CTA GAA GCA GGA TAA TAG TCA TCC TCG TGA TGC TGG TTA TTC TTG 0.06 0.12 0.06 0.76 0.30 0.20 
CAA CAG CCA CCG CGA CGG CTA CTG GAA GGA TAA TAG TCA TCC TCG TGA TGG TTA TTC TTG 0.06 0.12 0.06 0.76 0.42 0.08 
CAA CAC CAG CCG CGA CGG CTA CTC CTG GAA GAG GTG TAA TAG TCA TCG TGA TTA TTC TTG 0.06 0.12 0.06 0.76 0.48 0.02 
CAA CAC CAG CTC CTG GAA GAC GAG GCC GGC GTA GTC GTG TAA TAC TCA TGA TTA TTC TTG 0.06 0.12 0.18 0.64 0.48 0.02 
ATC CAA CAC CAG CTC CTG GAA GAC GAG GAT GCC GGC GTA GTC GTG TAA TAC TTA TTC TTG 0.06 0.12 0.24 0.58 0.48 0.02 
CAA CAG CCA CCG CGA CGG CTA CTC CTG GAA GAG TAA TAG TCA TCG TGA TGG TTA TTC TTG 0.06 0.18 0.06 0.70 0.42 0.08 
CAA CAC CAG CCG CGG CTA CTC CTG GAA GAC GAG GTC GTG TAA TAG TCA TGA TTA TTC TTG 0.06 0.18 0.12 0.64 0.48 0.02 
AGA CAA CAG CCA CCG CGA CGG CTA CTG GGA TAA TAG TCA TCC TCG TCT TGA TGG TTA TTG 0.06 0.24 0.06 0.64 0.24 0.26 
ATG CAA CAC CAG CAT CCG CGG CTA CTC CTG GAA GAC GAG GTC GTG TAA TAG TTA TTC TTG 0.06 0.24 0.12 0.58 0.48 0.02 
AAC AAT ACC ACT AGC AGT ATC ATT GAA GAC GAT GCC GCT GGA GGC GGT GTC GTT TCC TTC 0.06 0.24 0.66 0.04 0.06 0.44 
ATG CAA CAC CAG CAT CCG CGA CGG CTA CTC CTG GAA GAG GTG TAA TAG TCG TTA TTC TTG 0.06 0.30 0.06 0.58 0.48 0.02 
AAC AAT ACC ACT AGC AGT ATC ATT CTC GAA GAC GAG GAT GCC GCT GGC GGT GTC GTT TTC 0.06 0.30 0.60 0.04 0.06 0.44 
AAC AAG AAT ACC ACT AGC AGT ATC ATT CTC CTT GAC GAG GAT GCC GCT GGC GGT GTC GTT 0.06 0.36 0.54 0.04 0.06 0.44 
AAC AAG AAT ATC ATT CAC CAG CTC CTG CTT GAC GAG GAT GCC GGC GTA GTC GTG GTT TAC 0.06 0.36 0.54 0.04 0.12 0.38 
AGA AGG CAA CAG CCA CCG CCT CGA CGG CTA CTG TAA TAG TCA TCG TCT TGA TGG TTA TTG 0.06 0.48 0.06 0.40 0.06 0.44 
AAG AGG CAA CAG CCA CCG CCT CGA CGG CTA CTG CTT TAA TAG TCA TCG TGA TGG TTA TTG 0.06 0.48 0.06 0.40 0.24 0.26 
AAG CAA CAG CCA CCG CGA CGG CTA CTC CTG CTT GAG TAA TAG TCA TCG TGA TGG TTA TTG 0.06 0.48 0.06 0.40 0.30 0.20 
AAG ATG CAA CAC CAG CAT CCG CGA CGG CTA CTC CTG CTT GAG GTG TAA TAG TCG TTA TTG 0.06 0.48 0.06 0.40 0.48 0.02 
AAC AAG AAT ACG ACT AGG AGT ATG ATT CAC CAG CAT CCG CCT CGG CGT CTG CTT GTG GTT 0.06 0.48 0.42 0.04 0.06 0.44 
AAC AAG AAT ATG ATT CAC CAG CAT CCG CGG CTA CTC CTG CTT GAC GAG GTC GTG GTT TAG 0.06 0.48 0.42 0.04 0.12 0.38 
AAG ATG CAA CAG CAT CCA CCG CGA CGG CTA CTC CTG CTT GAG TAA TAG TCG TGG TTA TTG 0.06 0.54 0.06 0.34 0.42 0.08 
AAG ATG CAA CAC CAG CAT CCG CGG CTA CTC CTG CTT GAC GAG GTC GTG TAA TAG TTA TTG 0.06 0.54 0.30 0.10 0.24 0.26 
AAG AAT ACG ACT AGG AGT ATG ATT CAA CAC CAG CAT CCG CCT CGG CGT CTG CTT GTG TTG 0.06 0.60 0.30 0.04 0.06 0.44 
AAG AAT ACG ATG ATT CAA CAC CAG CAT CCG CGG CGT CTA CTC CTG CTT GAG GTG TAG TTG 0.06 0.60 0.30 0.04 0.12 0.38 
AAG AAT ATG ATT CAA CAC CAG CAT CCG CGG CTA CTC CTG CTT GAC GAG GTC GTG TAG TTG 0.06 0.60 0.30 0.04 0.18 0.32 
AAG AGG ATG CAA CAG CAT CCA CCG CCT CGA CGG CTA CTG CTT TAA TAG TCG TGG TTA TTG 0.06 0.66 0.18 0.10 0.12 0.38 
AAG AAT ACG ACT AGG AGT ATG ATT CAA CAG CAT CCA CCG CCT CGG CGT CTG CTT TGG TTG 0.06 0.66 0.24 0.04 0.06 0.44 
AAG AAT ACG AGG ATG ATT CAA CAG CAT CCA CCG CCT CGG CGT CTA CTG CTT TAG TGG TTG 0.06 0.72 0.18 0.04 0.06 0.44 
AAG AAT ACG AGG ATG ATT CAA CAC CAG CAT CCG CCT CGG CGT CTA CTG CTT GTG TAG TTG 0.06 0.72 0.18 0.04 0.12 0.38 
ACA ACT AGA AGT CCA CGA GCA GCC GGA GGC TAA TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.12 0.06 0.12 0.70 0.06 0.44 
ACA ACC AGA CGA GCA GCC GGA GGC GGT GTA TAA TAC TCA TCC TCG TCT TGA TGC TGT TTA 0.12 0.06 0.30 0.52 0.06 0.44 
ACA ACC AGA GAC GCA GCC GGA GGC GGT GTA GTC TAA TAC TCA TCC TCT TGA TGC TGT TTA 0.12 0.06 0.36 0.46 0.12 0.38 
ACA ACC ACT AGA AGT GAC GCA GCC GGA GGC GGT GTC TAA TCA TCC TCT TGA TGC TGT TTA 0.12 0.06 0.66 0.16 0.06 0.44 
AAT ACA ACC ACT AGA AGC AGT ATC ATT GAC GAT GCC GCT GGA GGC GGT GTC TCC TCT TGT 0.12 0.06 0.72 0.10 0.06 0.44 
AAC AAT ACC ACT AGA AGC AGT ATC ATT GAC GAT GCC GCT GGA GGC GGT GTC GTT TCC TCT 0.12 0.06 0.78 0.04 0.06 0.44 
ACA ACT AGA AGT CCA CCG CGA CGG GCA GGA TAA TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.12 0.12 0.06 0.70 0.06 0.44 
ACA ACC ACT AGA AGT CGA GCA GCC GGA GGC GGT TAA TCA TCC TCG TCT TGA TGC TGT TTA 0.12 0.18 0.48 0.22 0.06 0.44 
AAT ACA ACC ACT AGA AGC AGT ATT GAC GCC GCT GGA GGC GGT GTC TCA TCC TCT TGA TGT 0.12 0.18 0.60 0.10 0.06 0.44 
AAC AAT ACC ACT AGA AGC AGG AGT ATC ATT CCT GAC GAT GCC GCT GGC GGT GTC GTT TCT 0.12 0.24 0.60 0.04 0.06 0.44 
AAC AAG AAT ACT AGC AGT ATC ATT CAC CTC CTT GAC GAG GAT GCC GCT GGC GTC GTG GTT 0.12 0.24 0.60 0.04 0.18 0.32 
AAC AAG AAT AGC ATC ATT CAC CTC CTT GAC GAG GAT GCC GCT GGC GTA GTC GTG GTT TAC 0.12 0.24 0.60 0.04 0.24 0.26 
ACA AGA AGG CCA CCG CCT CGA CGG CTA GCA TAA TAG TCA TCG TCT TGA TGC TGG TGT TTA 0.12 0.30 0.06 0.52 0.06 0.44 
AAT ACA ACC ACG ACT AGA AGC AGT ATT CGT GCC GCT GGA GGC GGT TCA TCC TCT TGA TGT 0.12 0.30 0.48 0.10 0.06 0.44 
AAC AAG AAT ACC ACT AGC AGG AGT ATC ATT CCT CTT GAC GAT GCC GCT GGC GGT GTC GTT 0.12 0.30 0.54 0.04 0.06 0.44 
ACA AGA AGG CAG CCA CCG CCT CGA CGG CTA CTG TAA TAG TCA TCG TCT TGA TGG TGT TTA 0.12 0.36 0.06 0.46 0.12 0.38 
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATT CCT CGT GCC GCT GGC GGT TCA TCT TGA TGT 0.12 0.36 0.42 0.10 0.06 0.44 
AAC AAG AAT ACC ACG ACT AGC AGG AGT ATC ATT CCT CGT CTT GAT GCC GCT GGC GGT GTT 0.12 0.36 0.48 0.04 0.06 0.44 
AAC AAG AAT ACT AGT ATC ATT CAC CAG CTC CTG CTT GAC GAG GAT GCC GGC GTC GTG GTT 0.12 0.36 0.48 0.04 0.18 0.32 
ACA ACT AGA AGG AGT CCA CCG CCT CGA CGG GCA TAA TCA TCG TCT TGA TGC TGG TGT TTA 0.12 0.42 0.30 0.16 0.06 0.44 
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATT CCG CCT CGG CGT GCT GGT TCA TCT TGA TGT 0.12 0.42 0.36 0.10 0.06 0.44 
AAT ACA ACG ACT AGA AGC AGG AGT ATT CCA CCG CCT CGG CGT GCT TCA TCT TGA TGG TGT 0.12 0.48 0.30 0.10 0.06 0.44 
AAC AAG AAT ACC ACG ACT AGC AGG AGT ATG ATT CAT CCG CCT CGG CGT CTT GCT GGT GTT 0.12 0.48 0.36 0.04 0.06 0.44 
AAC AAG AAT ACT AGT ATG ATT CAC CAG CAT CCG CGG CTC CTG CTT GAC GAG GTC GTG GTT 0.12 0.48 0.36 0.04 0.18 0.32 
ACA ACT AGA AGG AGT CAG CCA CCG CCT CGA CGG CTG TAA TCA TCG TCT TGA TGG TGT TTA 0.12 0.54 0.18 0.16 0.06 0.44 
AAT ACA ACG ACT AGA AGG AGT ATT CAG CCA CCG CCT CGG CGT CTG TCA TCT TGA TGG TGT 0.12 0.54 0.24 0.10 0.06 0.44 
AAC AAG AAT ACC ACG ACT AGG AGT ATG ATT CAG CAT CCG CCT CGG CGT CTG CTT GGT GTT 0.12 0.54 0.30 0.04 0.06 0.44 
AAC AAG AAT ACG ACT AGT ATG ATT CAC CAG CAT CCG CGG CGT CTC CTG CTT GAG GTG GTT 0.12 0.54 0.30 0.04 0.18 0.32 
AAG AAT ACA ACC ACG ACT AGG AGT ATG ATT CAG CAT CCG CCT CGG CGT CTG CTT GGT TGT 0.12 0.60 0.24 0.04 0.06 0.44 
AAC AAG AAT ACG ATG ATT CAC CAG CAT CCG CGG CGT CTA CTC CTG CTT GAG GTG GTT TAG 0.12 0.60 0.24 0.04 0.24 0.26 
AAT ACA ACG ACT AGA AGG AGT ATG ATT CAG CAT CCA CCG CCT CGG CGT CTG TCT TGG TGT 0.12 0.66 0.12 0.10 0.06 0.44 
AAG AAT ACA ACG ACT AGG AGT ATG ATT CAG CAT CCA CCG CCT CGG CGT CTG CTT TGG TGT 0.12 0.66 0.18 0.04 0.06 0.44 
AAT ACA ACC ACG ACT AGA AGC AGT ATC ATT CGT GAT GCC GCT GGA GGC GGT TCC TCT TGT 0.18 0.24 0.48 0.10 0.06 0.44 
AAC AAT ACC ACG ACT AGA AGC AGG AGT ATC ATT CCT CGT GAT GCC GCT GGC GGT GTT TCT 0.18 0.24 0.54 0.04 0.06 0.44 
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATC ATT CCT CGT GAT GCC GCT GGC GGT TCT TGT 0.18 0.30 0.42 0.10 0.06 0.44 
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATG ATT CAT CCG CCT CGG CGT GCT GGT TCT TGT 0.18 0.42 0.30 0.10 0.06 0.44 
AAT ACA ACG ACT AGA AGC AGG AGT ATG ATT CAT CCA CCG CCT CGG CGT GCT TCT TGG TGT 0.18 0.48 0.24 0.10 0.06 0.44 
AAG AAT ACA ACC ACG ACT AGC AGG AGT ATG ATT CAT CCG CCT CGG CGT CTT GCT GGT TGT 0.18 0.54 0.24 0.04 0.06 0.44 
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ANALYSIS OF A CIRCULAR CODE MODEL 167
The entropy H(X) de"ned for the words of length
1 (nucleotides) is extended for words w

i
"a

12
a
n
, i3M1,2,4nN, of a given length n as follows:

H
n
"!

4n

+
i/1

P(w
i
) log

2
P(w

i
),

where P (w
i
) is the occurrence probability of the

word w
i
. Note H

1
"H(X).

As the protein genes are read in the reading
frame, the entropy H

n
de"ned for the words of

length n is extended to the entropy H
n,f

,
f3M0,1,2N, computed from the occurrence prob-
abilities P

f
(w

i
) of the word w

i
"a

12
a
n

in the
frame f, as follows:

H
n,f

"!

4n

+
i/1

P
f
(w

i
) log

2
P

f
(w

i
).

Notes: (i) For the word w
i
of length 1 (n"1),

there is the obvious relation

P
f
(w

i
)"p

f`1
(w

i
), (11)

where p
f`1

(w
i
) is the probability of a base at the

position ( f#1)3M1,2,3N in the NF method.
(ii) H

3,0
can be considered as a classical en-

tropy H(>) for the discrete random variable
> taking the 64 values in MAAA,2,TTTN in
reading frame.

When the probabilities follow a random dis-
crete uniform law, i.e. all the probabilities are
equal, then the maxima of the entropy functions
H

n
and H

n,f
are attained and are equal to

+4n

1
(1/4n) log

2
4n"log

2
4n"2n bits (Cover &

Thomas, 1991).
Classically, an entropy function is expressed in

bits per nucleotide with a maximal value equal to
2 corresponding to a uniform random distribu-
tion (Loewenstern & Yianilos, 1999). Then, the
introduced functions are normalized as follows:

HI
n
"H

n
/n, (12)

HI
n,f

"H
n,f

/n. (13)

The two statistical methods presented in Sec-
tion 1, the TF method (Arquès & Michel, 1996)
and the NF method (Koch & Lehmann, 1997),
allow to construct circular codes from data
observed in the coding genes. The circular codes
constructed by both methods, are sets of tri-
nucleotides in frame 0. The construction of these
di!erent codes are based on the occurrence prob-
abilities of the triplets in frame 0.

The TF method directly uses these prob-
abilities.

In contrast, the NF method assumes the inde-
pendence between successive bases for using the
occurrence probabilities of the bases at the di!er-
ent positions in a trinucleotide (triplet) observed
in frame 0.

The computation of the entropies associated
with the two models of probabilities will measure
the real in#uence of the hypothesis of non-
correlation between successive bases.

The NF method is based on the occurrence
probability p

i
(h) of a given base h3MA,C,G,TN at

position i3M1,2,3N in a trinucleotide (triplet) ob-
served in frame 0. By assuming the non-correla-
tion between successive bases, the occurrence
probability P

0
(abc) of the trinucleotide abc

in frame 0, is then deduced by the product of
individual probabilities which is equal by using
relation (11) to

P
0
(abc)"P

0
(a)P

1
(b)P

2
(c)"p

1
(a)p

2
(b)p

3
(c).

Then, the entropy H
NF

associated with these
probabilities is

H
NF

"! +
a,b,c3MA,C,G,TN

p
1
(a)p

2
(b)p

3
(c)

]log
2
(p

1
(a)p

2
(b)p

3
(c)).

By assuming the non-correlation between suc-
cessive bases and by using relation (11), basic
results lead to the entropy H

NF
equal to (Cover

& Thomas, 1991)

H
NF

"! +
a,b,c3MA,C,G,TN

p
1
(a)p

2
(b)p

3
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]log
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3
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+
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+
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i
(h) log

2
p
i
(h)



TABLE 4
Computation of di+erent types of entropies (bit per
nucleotide) from the occurrence frequencies of the
64 trinucleotides in the frame 0 modulo 3 and in the
3 frames (average frame) of prokaryotic protein
coding genes (13 686 sequences, 4 708 758 trinuc-
leotides; data from Arquès & Michel, 1996, p. 49)

Entropy in the
frame 0 modulo 3

Classical
entropy H

n

Nucleotide (n"1) H3
NF

"1.965 H
1
"1.998

Trinucleotide (n"3) H3
TF

"1.918 H3
3
"1.984
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H
1,f

.

The TF method is based on the observed
occurrence probabilities of the trinucleotides in
frame 0. Therefore, its entropy H

TF
is equal to

H
TF

"! +
a,b,c3MA,C,G,TN

P
0
(abc) log

2
P
0
(abc)"H

3,0
.

In order to express the entropies H
3
, H

NF
and

H
TF

in bits per nucleotide, the functions are nor-
malized according to eqns (12) and (13)

HI
3
"H

3
/3, HI

NF
"H

NF
/3, HI

TF
"H

TF
/3.

Remark: With gene populations containing sev-
eral millions of nucleotides (e.g. Arquès &
Michel, 1996; Koch & Lehmann, 1997),
the computed probabilities are stable (law of
large numbers). Therefore, the values obtained
here from such probabilities lead to a precise
approximation of the entropy functions.

2.2.2. Results

The values of these entropies in the pro-
karyotic protein genes are presented in Table 4.

The values of H
1

(resp. H3
3
) are associated with

the nucleotides (resp. the trinucleotides) without
considering the existence of the reading frame in
the prokaryotic protein genes. As expected, these
values are close to 2 representing the random
situation. The value HI

3
(1.984 bit per nucleotide)

is slightly less than the value of H
1

(1.998 bit per
nucleotide), showing that the basic element of
information in the protein genes, is the trinucleo-
tide and not the nucleotide.

The value of HI
TF

(1.918 bit per nucleotide)
associated with the TF method, is signi"cantly
lower than the value of HI

NF
(1.965 bit per nucleo-

tide) associated with the NF method. The
HI

TF
value can be compared with the classical

estimate of entropy of coding genes which is
about 1.92 (Loewenstern & Yianilos, 1999).
This value of 1.92 can be improved by consider-
ing particular sequences or by using speci"c
algorithms as shown in Table 4 of Loewenstern
& Yianilos (1999) for a non-redundant collection
of 490 human genes.

The improvement of the estimate of the en-
tropy is not the aim of this paper. However, the
fact that the value of HI

TF
corresponds to the

classical estimate, implies that the probability
model used in the TF method can be considered
as a correct representation of the structure of the
coding genes.

In contrast, the value of HI
NF

di!ers signi"-
cantly from the classical estimate. The hypothesis
of independence between successive bases then
has a strong e!ect on the values of the entropies.
Therefore, the probability model used in the NF
method reveals neither the internal structure of
the coding genes nor the occurrence probabilities
of the triplets in frame 0.

3. Discussion

Koch & Lehmann (1997) have proposed
a probabilistic model for constructing the circu-
lar code observed in the protein genes. Their
method (called here as NF method) is based on
the nucleotide frequencies with a hypothesis of
absence of correlation between successive bases
on a DNA strand for deducing a circular
code from the product of the three occurrence
probabilities of nucleotides in the positions of
trinucleotide read in frame 0. It allows a simple
construction of some particular circular codes
but reveals several limits for constructing the
circular code associated with protein genes.

(i) Several self-complementary circular codes,
but not a unique one, are generated by the NF
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method from the observed probabilities (Section
2.1.1).

(ii) The self-complementary circular code X
0

observed in the protein genes of both eukaryotes
and prokaryotes cannot be generated by the NF
method (Section 2.1.2).

(iii) 88 among 216 self-complementary circular
codes can be generated by the NF method (Sec-
tion 2.1.3). They are listed in Table 3.

(iv) The hypothesis used in the NF method of
no correlation between successive bases in the
protein genes, is not veri"ed (Section 2.2.2). In-
deed, this hypothesis has been justi"ed by com-
puting the entropy with occurrence probabilities
of words of length 1}6 (Koch & Lehmann, 1997).
However, any probability model can produce
a value of entropy. The choice of the function for
revealing the genetic information in the sense of
the information theory de"ned by Shannon
(1949), is very important as the value of the en-
tropy strongly varies among the functions used.
Several examples of di!erent functions estimating
the value of the entropy are presented in Chat-
zidimitriou-Dreismamm et al. (1996), Lio et al.
(1996), Loewenstern & Yianilos (1999), etc. In
order to evaluate the hypothesis of non-correla-
tion between successive bases, two estimates of
the entropy are computed here. The "rst estimate
associated with the TF method, is based on the
64 occurrence probabilities of triplets in frame 0.
The entropy value HI

TF
associated with these

probabilities, is equal to 1.918 bit per nucleotide
and is similar to the classical estimate (1.92) of
the entropy of coding genes (Loewenstern &
Yianilos, 1999). The second estimate associated
with the NF method, is based on the 12 occur-
rence probabilities of nucleotides in the three trip-
let sites. These nucleotide probabilities with the
hypothesis of non-correlation between successive
bases, allow to deduce the occurrence probabilities
of triplets in frame 0 more simply (with 12 values
compared to 64 ones, but with a probability hy-
pothesis). However, its entropy value HI

NF
is equal

to 1.965 bit per nucleotide and signi"cantly di!ers
from HI

TF
. Therefore, the hypothesis of non-cor-

relation between successive bases is not veri"ed.

4. Conclusion
The method introduced by Koch & Lehmann

(1997) is a new approach for constructing circular
codes. This NF method constructs in a simple
way a sub-set of circular codes which is included
in the set of circular codes generated by the #ower
automaton method. The NF method has an obvi-
ous interest in the "eld of the theory of codes. In
this paper, some new results are presented in this
respect, in particular, the number of codes gener-
ated by this NF method and some patterns of
code words excluded by the NF method.

However, the main purpose of the NF method
was to explain the circular code X

0
identi"ed in

the protein genes of both eukaryotes and
prokaryotes (Arquès & Michel, 1996). Several
results were presented here concerning the rela-
tions between the NF method and the code X

0
.

The NF method does not generate a unique self-
complementary circular code. Furthermore, it
cannot generate the code X

0
. Finally, the hypoth-

esis of non-correlation between successive bases
at the basis of the NF method, is rejected as the
di!erent computations of the entropy clearly
show that the probabilities used by the NF
method do not respect the internal structure of
the coding genes. In conclusion, the NF method
is not an appropriate model for explaining the
circular code X

0
.
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