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A computer method is developed for identifying patterns in
electroencephalogram (EEG) signals. An EEG nwmerical
signal s transformed into a symbolic series. The simple
transformation used here studies the variations between two
successive values of the signal. Then, this series is analysed
with a symbolic correlation function based on probabilities
without bias. The use of large windows, e.g. 1 hour, allows the
identification of weak signals hidden by the specific ones. An
application of this method to the sleep analysis of a healthy
adult shows a periodicity modulo 10 in all derivations. A
possible  newrophysiological meaning is presented in the
discussion.

Introduction

Although the first report concerning the human
electroencephalogram (EEG) appeared 70 years ago
[1], the nature of EEG is still in investigation for
fundamental research in neurology as well as for
applied research in medicine. Computer methods allow
quantitative analyses of recorded channels, and in
particular identifications of patterns in the EEG signals.
For example, the alpha patterns related to a certain
event [2], e.g. a sensory stimulus, are studied by
methods of EEG frequency and time-frequency analysis;
see e.g. [3]. The understanding, recognition and
treatment of epilepsy may be analysed by searching
and characterizing the preictal, ictal and postictal
patterns or by detecting seizure disorders; see e.g.
[4-7]. Insomnia may be associated with particular
alpha patterns; see e.g. [8]. Finally, a new sleep
classification, independent of the Rechtschaffen and
Kales system [9], is investigated by determining a
limited set of quasi-stationary segments in the four
main frequency bands delta, theta, alpha and beta; see
eg [10-12].

A new computer method is proposed for identifying
weak patterns which are hidden by the specific EEG
signals. In EEG sleep, the classical specific signals of a
healthy subject comprise 5—6 cycles of about 90 min
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containing the four stages of non-REM (rapid-eye-
movement) sleep and REM sleep [13,14]. The four
stages of non-REM sleep are: stage 1 (drowsiness) with
irregular alpha waves (between 8 and 13 Hz) and some
rhythmic theta waves (between 4 and 7 Hz); stage 2 with
theta waves associated with sleep spindles (between 12
and 14 Hz), vertex sharp waves and K complexes; stage
3 with delta waves (less than 4 Hz) associated with
spindles, vertex spikes and K complexes; and stage 4
with mainly high-voltage delta waves. REM sleep has
low-voltage irregular waves.

In order to reveal weak patterns, the method developed
is based on three properties:

e transformation of the EEG signal into a symbolic
series according to a property of the electrical
activity, here the variations between two successive
values of the signal;

e analysis of this series with a symbolic correlation
function based on probabilities without bias; and

e data analysis with large recorded windows (several
minutes), in contrast with the methods searching
specific signals with windows of a few seconds,
typically between 1 and 4 s.

An application of this method to the sleep analysis of a
healthy subject shows a periodicity modulo 10 in all
derivations.

Method

Definition of a symbolic correlation function

An EEG signal can be associated with a series
x(f) = xg,. . .,%,—1 of n numerical values function of the
time and expressed in uVolt [15], x; being the ith value
in x(#). This numerical series x(¢) is transformed into a
symbolic series a{?) = ay. ..a, 1 of m letters function of
the time on a given alphabet A, @, being the ith letter in

a(t).

The simple transformation studied here analyses the
increase I and the decrease D between two successive
values x; and x;, 1.

@ — I if Nitl] > X
"7 1 D otherwise

This transformation leads to a symbolic series a(f) with
m=n — 1 letters on the 2-letter alphabet A={D,]}. The
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symbols I and D could roughly be associated with
activation and inactivation, respectively, of neurones.

Let 1, t€1{1,.. .faa, be the occurrence time of a letter a’
after a letter @, a,d €A. In order to correct the side effect
induced by the end of the symbolic series a(f), the total
number of letters studied in a(?) is equal to the constant
Myax = M—fmax— 1, 1€, independent of ¢ [16]. The
correlation function F, (), also noted a_a’ (for
simplicity), is then the function —F, ,(f) giving the
occurrence probability that the letter a’ occurs at the
time t after the letter @ in the symbolic series a(f)

1 Mypax —1
Foa (f) =

ha(Ohy (P4 1),

Mmax 75

with A,(i) :{ 1 if the letter in the position iis a
0 otherwise.

Notes:

i Y weafaw(t) =1 Vi
ii In a random series in which the two letters a and
d, a,d €A and a#d, are generated with equiprob-
ability, i.e. P(a) =P(a’)=1/2, then:
(a) for (>1, F,,(H=Pla) x Pla')=1/4
Ya,d €A (independence of two events);
and
(b) for t=1, the two events are obviously not
independent:
e F,,(1)=1/6 VacA (one of six pos-
sibilities for a;a;.1 with three suc-
cessive values x; x;,1 and x;,9);
e F, . (1)=1/3 VadeA (two of six
possibilities for a;a;,1).
iii  The definition of the correlation function F, ,(7)
differs from the classical one of A, ,(#), which is
defined for t€{0,...,m-1} by:

m—1

A(La’(t) = Z ]lll(i)}ln/(i + t),
=0

such as the discrete Fourier transform (DFT) of
the correlation function is the product of the
Fourier wansforms of the two signals whose one is
conjugate:

DF’I‘[AHA,(I'(I")] = ﬁﬂ(f)Hll/(f)a

where H,(f) is the Fourier transform of h,(2). If
a=a’ then the correlation function is called
autocorrelation functon and its Fourier trans-
form is equal to the power spectral:

DFT[Aq(t)] = |Ha(f)I*.

The definition of F, ,(f), contrary to the classical
one of A, (1), leads to probabilities without bias
by correcting the side effect induced by the end
of the symbolic series, i.e. there is no probability
decrease when f increases. Therefore, the func-
tion F, ,(#) is more suitable for revealing weak
periodicities and local maxima.
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iv  Similar transformations, i.e. from numerical data
into symbolic ones, have already been proposed,
e.g. transformation into binary sequences for
computing in EEG series different measures,
such as the Kolmogorov complexity, the informa-
tion content and the fractal dimension [4].

The correlation function a_a’ is represented as a curve
as follows:

i the abscissa shows the time ¢ of the letter «’ after
the letter a, by varying tbetween 1 and £y, =100;

ii the ordinate gives the probability F, ,(f) in the
symbolic series a(i).

On the alphabet A={D,1}, there are 92-4 correlation
functions: D_D, D_I, I_D, I_1. The results given in this
paper only concern the activation autocorrelation
function I_I.

Data acquisition

The EEG data are obtained from a continuous record
of more than 6 h 30 min in the night sleep of a healthy
adult (Service de Neurologie, Neuropsychologie et
Explorations fonctionnelles des Epilepsies des Hopi-
taux Universitaires de Strasbourg). The record
is sampled at 128 Hz (s™1) and leads to n=3000000
observations (128 x 3600=460800 observations per
hour) for the 20 derivations {FP1,F3,C3,P3,01F7,
T38,T5,FP2,F4,C4,P4,02,F8,T4,T6,FZ,CZ,PZ,0Z}. The
positive and negative values of the data are given in
pVolt distributed around 0 pVolt and with a sensibility
at 0.1 pVolt.

Generally, the computer methods analyse the EEG
signals after detection and rejection of the artefacts,
such as electromyography and movement artefacts.
The EEG-artefact processing is a difficult problem
which is treated by several techniques such as pre-
filtering (wide and narrow range bandpass filters)
and neural network systems for eliminating noise or
for simplifying the wave recognition; see e.g. [17-
19]. However, all these techniques may lead to a
lost of information which can alter the spectral
analysis [20]. In contrast, the approach developed
here, which considers a great number of observa-
tions for identifying weak patterns, needs neither
artefact processing nor window selection. The law of
large numbers applied in the correlation function
destroys the specific signals for revealing the
common and weak signals (not detailed).

Results

Preliminary data analysis

Table 1 gives basic statistics with n=3000 000 observa-
tions of the 20 EEG signals. As expected with the
calibrated recording, all 20 EEG signals have a mean
equal to 0.0 (at the sensibility level) and a skewness very
close to 0: each signal has a symmetrical distribution
around 0 uVolt.
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Table 1. Basic statistics of the 20 EEG signals obtained with n = 3 000 000 observations.

Mean Standard deviation Minimum Maximum Skewness Kurtosis
FP1 0.0 48.7 —361.5 364.2 0.0 4.7
F3 0.0 41.1 - 360.9 359.5 0.1 5.1
C3 0.0 20.7 —3b1.6 203.4 —0.2 5.3
P3 0.0 21.3 —-217.3 264.7 0.1 5.1
01 0.0 40.8 —364.5 3731 —0.1 5.7
F7 0.0 41.6 —359.5 371.7 —0.2 5.2
T3 0.0 38.2 —358.1 386.6 —0.2 6.1
Th 0.0 40.2 —358.2 359.5 —-0.1 4.8
FpP2 0.0 49.0 —361.7 361.0 0.1 4.7
F4 0.0 40.7 —359.4 357.9 0.2 5.2
C4 0.0 21.9 —278.4 242.6 —0.1 5.1
P4 0.0 26.1 —297.5 322.2 0.0 5.2
02 0.0 43.5 —370.1 378.3 —0.1 6.0
F8 0.0 43.4 —358.4 372.2 —-0.2 3.7
T4 0.0 37.3 —3568.5 357.1 —0.1 49
T6 0.0 41.5 —358.9 369.3 —0.1 4.9
FZ 0.0 45.5 —360.5 384.1 0.1 4.5
CZ 0.0 21.1 —-210.9 245.5 —0.1 3.6
PZ 0.0 19.6 —218.1 251.0 0.3 5.7
(V4 0.0 41.2 —3874 389.6 —0.1 7.4

Several classical statistical parameters reveal the varia-
bility of the 20 EEG signals (table 1):

e astandard deviation with a lowest value of 19.6 for
PZ and a highest value of 49.0 for FP2;

e a minimum with a lowest value of —387.4 for OZ
and a highest value of —210.9 for CZ;

e a maximum with a lowest value of 203.4 for C3
and a highest value of 389.6 for OZ; and

@ a kurtosis different from 0 for all the signals which
do not follow a standard normal distribution.

Furthermore, the direct observation of an EEG record-
ing does not allow the recognition of an obvious and
simple pattern which is common to the 20 signals.
Figures 1 (a,b) given as an example with two window
recordings (about 8 s) at different times (each figure
containing only two signals for readability reasons),
present a ‘random’ aspect which contrasts with the
periodicity observed in figure 2.

Identification of a periodicity modulo 10

Unexpectedly, and in contrast to the directly observed
variability, the increase/decrease transformation of the
numerical signal P4 and its analysis by the autocorrela-
tion function II with all the observations
(n=3000000), identify a periodicity modulo 10 with
the following properties (figure 2):

e local maximal values of the function at ftaround 1,
11, 21, etc. up to 91 traducing the persistence of
this periodicity during about 0.78 s (about 10
waveforms) after its generation;

e a maximal value at 1=1 with a probability equal to
0.381 and a local maximum at t=21; and

e a continuous decrease between ¢=1 and 6 leading
to a minimal value at #=6 with a probability equal
to 0.201.

Note that all these statistical properties observed with
the autocorrelation function Fy(f), would be reduced
mainly to a frequency peak in 1/10=0.1 with the
classical spectral analysis.

Statistical significance of this periodicity modulo 10

The statistical significance of this periodicity modulo 10
is evaluated as follows:

i There is no periodicity in the random case.
Indeed, if the autocorrelation function 1.1 is
applied in a random series in which the two
letters D and I are generated with equiprob-
ability, i.e. P(D)=P(I)=1/2, then it presents a
horizontal line equal to 1/4=0.25 for i > 1 and a
minimum equal to 1/6 =~ 0.166 at 1=1 (see note
ii in Definition of a symbolic correlation func-
tion). The random case with the autocorrelation
function 1.1 has no periodicity, no unique
maximal value and no maximal value at i=1.

il If the n=3000000 observations in the signal P4
are randomly permutated, then the curve shape
of the autocorrelation function I_I is identical to
the random one (figure 3). Note also that the
probability values of the autocorrelation function
are close to the random case meaning that the
letters I and D, i.e. the increase and the decrease
between two successive values x; and x;,;, have
approximately the same occurrence probabil-
ities.

iii The periodicity modulo 10 also exists in different
epochs of the signal P4. For example, if the
n=3000 000 observations of P4 are divided into
three successive epochs of 1 000 000 observations,
ie. from 1 to 1000000 (figure 4(a)), from
1000001 to 2000000 (figure 4(b)) and from
2000001 to 3000000 (figure 4(c)), the auto-
correlation functions I_I applied in these three
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Figure 1. Absence of an obvious and simple patiern which is common to the 20 signals in direct observation. (a) An example with
the signals FP2 and PZ in a recording window (about 8 s). The horizontal axis represents the time t, t€{ 10° +1,...,10° + 1000}
with a time unit equal to 1/128 s. The vertical axis represents the values of FP2 and PZ in microvolt. (b) An example with the
signals F3 and 02 in a recording window (about 8 s). The horizontal axis vepresents the time t, t€ (10°+1,...,10°+ 1000} with a
time unit equal to 1/128 s. The vertical axis represents the values of F3 and O2 in microvoll.

epochs also reveal this periodicity. This result can traducing a persistence of this periodicity during
be related to the law of large numbers which about 0.39 s (about five waveforms) instead of
implies stable frequencies with a great number of 0.78 s (see above).

observations [21].

iv Very unexpectedly, this periodicity modulo 10 is The maximum value is always observed at =1 with the
present in all the 20 EEG signals (figures 5(a- highest probability (0.397) for FZ and OZ and with the
t)). However, all these periodicities do not have lowest probability (0.369) for P3 (not shown in figures
exactly the same features. The periodicity mod- 5(a—t) for readability reasons). The minimum value is

ulo 10 is attenuated with four signals F3, T4, FZ observed at ¢ around 6 with the highest probability
and CZ (figures 5(b,j,q,r) respectively) with local (0.213) for F4 (figure 5(j)) and with the lowest
maxima of the autocorrelation function up to 51 probability (0.197) for T6 (figure 5(p)).
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Figure 2. Identification of a periodicity modulo 10 in the signal P4 with n = 3 000 000 observations. The horizontal axis represents
the time t, t€{1,.. ., 100} with a time unit equal to 1/128 s, between the two letters I with I={x,,; > x;} and x in microvolt. The
vertical axis represents the autocorrelation function I_I.
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Figure 3. Loss of the periodicity modulo 10 in the signal P4 after random permutations of n =3 000000 observations. The
autocorrelation curve shape is identical to the random one with a horizontal line close to 1/4=0.25 fort > 1 and a minimum close
to 1/6 ~ 0.166 at t=1 (see note ii in Definition of a symbolic corvelation function). The horizontal axis represents the time t,
te{l,...,100] with a time unit equal to 1/128 s, between the two letters I with I= {%; , ; > x;) and x in microvolt. The vertical axis
represents the autocorrelation function I_I.

Discussion

® analysis of this series with a symbolic correlation
The main purpose of this work is the development of a function based on probabilities without bias; and
new computer method for identifying weak patterns in e data analysis with large recorded windows (several
EEG signals, e.g. periodicities. The method developed minutes).

is simple and based on three properties: .
Other methods are based on a principle of wansforma-

e transformation of the EEG signal into a symbolic tion of the EEG signal in order to reduce the
series according to the variations between two complexity of the waveform [22], in particular trans-
successive values of the signal; formation methods into binary sequences (e.g. [4]) and
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Figure 4. Periodicity modulo 10 in the signal P4 with an epoch of 1 000 000 observations Sfrom (a) 1 to 1000000; (b) 1000001 to
2000 000; and (c) 2 000 001 to 3 000 000. The horizonial axis represents the time t, t€ {3,...,100} (for readability reasons) with a
time unit equal to 1/128 s, between the two letters I with I={x; ;> X;/ and x in microvolt. The vertical axis represents the

autocorrelation function I_1

Fujimori’s method (reviewed in [23]) which transforms
a simple waveform by a single measured value in the
corresponding frequency, while the spectral analysis
results in a wider distribution in frequencies.

A few other transformations have been tested with this
correlation function definition, but without success. For
example, the intensity level of the value x; instead of its
variation, has been considered by dividing the fre-
quency band, for example from —400 to 400 uVolt into
ranges of 50 uVolt and by associating a given letter
a,je {1,...,16}, on the 16letter alphabet
Az{al,. . .,alG} to the value x; such as — 400+50(j—
1) € x; < — 400 +505. The 16 autocorrelation functions
@_d applied in this symbolic series do not reveal any
patterns (data not shown).

Neurophysiological interpretation of this periodicity
modulo 10 must be carried out with caution as the
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results are observed with a unique recording of one
adult. For deducing new properties in the EEG
signals, these results must be confirmed with other
records, investigation of which is not the aim of this

paper.

However, in this study, the periodicity which is
observed in a large continuous record (about 6 h
30 min) in the night sleep of a healthy adult and in
its different epochs, could be associated with a weak
and non-random sleep signal hidden by the specific
ones (mentioned in Introduction). A periodicity
modulo 10 leads to a frequency of 12.8 Hz which
belongs to the frequency band of alpha waves.
Therefore, this periodicity could traduce the presence
of alpha waves during the sleep, for every sleep stage
and in all derivations. For almost all derivations, the
persistence time of this periodicity is about 0.78 s
after generation.
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Figure 5. Periodicity modulo 10 in the signal (a) FP1; (b) F3 (c) C3;
(1) P4; (m) 02; (n) F8; (0) T4, (p) T6; (q) FZ; (r) CZ; (s) PZ; and (1) OZ.
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This observation of alpha waves during sleep can be
related with previous similar reports. It has been initially
described with a mixture of delta waves in the unipolar
C4 recording in psychiatric patients such as schizophre-
nia and depression [24], fibrositis syndrome [25], etc.
Also, it has been reported in healthy subjects in NREM
sleep and to a lesser degree though, in REM sleep [26],
and in occipital and parietal derivations [27].

The principle of transformation of the EEG signal into
a word on a given alphabet also allows the use of text
algorithms (reviewed in [28]) for identifying new EEG
patterns.
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