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Recently, we identified a hierarchy relation between trinucleotide comma-free codes and
trinucleotide circular codes (see our previousworks). Here, we extend our hierarchy with two new
classes of codes, called DLD and LDL codes, which are stronger than the comma-free codes. We
also prove that no circular code with 20 trinucleotides is aDLD code and that a circular code with
20 trinucleotides is comma-free if and only if it is a LDL code. Finally, we point out the possible
role of the symmetric group

∑
4 in the mathematical study of trinucleotide circular codes.

1. Introduction

We continue our study of the combinatorial properties of trinucleotide circular codes. A
trinucleotide is a word of three letters (triletter) on the genetic alphabet {A,C,G, T}. The set
of 64 trinucleotides is a code in the sense of language theory, more precisely a uniform code
but not a circular code (Remark 2.4 and [1, 2]). In order to have an intuitive meaning of these
notions, codes are written on a straight line while circular codes are written on a circle, but,
in both cases, unique decipherability is required. Circular codes are some particular subsets
of the 64 trinucleotide set while comma-free codes are even more constrained subsets.

In the past 50 years, comma-free codes and circular codes have been studied in
theoretical biology, mainly to understand the structure and the origin of the genetic code as
well as the reading frame (construction) of genes, for example [3–5]. Before the discovery of
the genetic code, Crick et al. [3] proposed a (maximal) comma-free code of 20 trinucleotides
for coding the 20 amino acids. In 1996, a (maximal) circular code X0 of 20 trinucleotides
was identified statistically on two large and different gene populations, eukaryotes, and
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prokaryotes [6]. During the last years, circular codes are mathematical objects studied in
discrete mathematics, theoretical computer science, and theoretical biology, for example [7–
22]. In particular, in theory of codes, there are some unexpected common notions between
variable length circular codes and trinucleotide circular codes [17, 19, 21, 22].

Recently, we proposed a hierarchy relation between the trinucleotide comma-free
codes and the trinucleotide circular codes (Proposition 3 in [23]). More precisely, all the tri-
nucleotide codes in this hierarchy are circular, the strongest ones being comma-free. In this
paper, we identify two new classes of trinucleotide circular codes which are stronger than the
comma-free codes.

We introduce here the following new notions. A set X of trinucleotides has the
propertyDLD if for any trinucleotides t, t′ ∈ X, no letter occurs both as a proper suffix of t and
a proper prefix of t′. A set X of trinucleotides has the property LDL if for any trinucleotides
t, t′ ∈ X, no diletter occurs both as a proper suffix of t and a proper prefix of t′. These sets
DLD and LDL are not only trinucleotides circular codes but they are also stronger than the
comma-free codes (Propositions 3.4 and 3.5, and Remarks 3.6 and 3.7). We also prove that no
circular code with 20 trinucleotides is aDLD code (Proposition 3.10) and that a circular code
with 20 trinucleotides is comma-free if and only if it is a LDL code (Proposition 3.11).

Therefore, our previous hierarchy (Proposition 3 in [23] recalled in Proposition 2.17
below) is extended with these new DLD and LDL classes of strong trinucleotides circular
codes (Proposition 4.1).

Finally, a curious relationwith the symmetric group Σ4 appears again. The tables given
here and the other symmetric relations identified previously (e.g., Proposition 6 in [23])
suggest that the symmetric group Σ4 can play an important role in the mathematical study of
these trinucleotide circular codes. However, we have no formal mathematical explanation so
far.

2. Preliminaries

Let A denote a finite alphabet, A∗ the free monoid over A and A+ the free semigroup over
A. The elements of A∗ are words and the empty word, denoted by ε, is the identity of A∗.
Given a subset X of A∗, Xn is the set of the words over A which are the products of n words
fromX, that is, Xn = {x1x2 · · ·xn | xi ∈ X}. If X is a (finite) set, then |X| denotes its cardinality
and if u is a word, then |u| denotes its length. A word u is a factor of a word v if there exist
two words u′ and u′′ such that v = u′uu′′. When u′ = ε (resp. u′′ = ε), u is a prefix (resp. suffix)
of v. A proper factor (resp. proper prefix, proper suffix) u of v is a factor (resp. prefix, suffix)
u of v such that |u| < |v|.

There is a correspondence between the genetic and language-theoretic concepts. The
letters (or nucleotides or bases) define the genetic alphabet A4 = {A,C,G, T}. The set of
nonempty words (resp. words) overA4 is denoted byA+

4 (resp.A∗
4). The set of the 16 words

of length 2 (or dinucleotides or diletters) is denoted by A2
4. The set of the 64 words of length

3 (or trinucleotides or triletters) is denoted by A3
4. The total order over the alphabet A4 is

A < C < G < T . Consequently, A+
4 is lexicographically ordered: given two words u, v ∈ A+

4 ,
u is smaller than v in lexicographical order, written u < v, if and only if either u is a proper
prefix of v or there exist x, y ∈ A4, x < y, and r, s, t ∈ A∗

4 such that u = rxs and v = ryt.

Definition 2.1. Code: a subset X of A+ is a code over A if for each x1, . . . , xn, x
′
1, . . . , x

′
m ∈ X,

n,m ≥ 1, the condition x1 · · ·xn = x′
1 · · ·x′

m implies n = m and xi = x′
i for i = 1, . . . , n.
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For any k-letter alphabet, k ≥ 1, and for any word length l, l ≥ 1, Al
k
is a code. In

particular,A3
4 is a code. More precisely, it is a uniform code [1]. Consequently, any nonempty

subset of A3
4 is a code, called trinucleotide code in this paper.

Definition 2.2. Trinucleotide comma-free code: a trinucleotide code X ⊂ A3
4 is comma-free if

for each y ∈ X and u, v ∈ A∗
4 such that uyv = x1 · · ·xn with x1, . . . , xn ∈ X, n ≥ 1, it results

that u, v ∈ X∗.

Several varieties of trinucleotide comma-free codes were described in [18].

Definition 2.3. Trinucleotide circular code: a trinucleotide code X ⊂ A3
4 is circular if for each

x1, . . . , xn, x
′
1, . . . , x

′
m ∈ X, n,m ≥ 1, p ∈ A∗

4, s ∈ A+
4 , the conditions sx2 · · ·xnp = x′

1 · · ·x′
m and

x1 = ps imply n = m, p = ε and xi = x′
i for i = 1, . . . , n.

Remark 2.4. A3
4 is obviously not a circular code and even less a comma-free code. However,

several subsets ofA3
4 are trinucleotide circular codes (e.g., Propositions 2.12 and 2.13).

Definition 2.5. Maximal trinucleotide circular code: a trinucleotide circular code X ⊂ A3
4 is

maximal if for each x ∈ A3
4, x /∈ X, X ∪ {x} is not a trinucleotide circular code.

Definition 2.6. A trinucleotide circular code containing exactly k elements is called a k-
trinucleotide circular code.

Remark 2.7. A 20-trinucleotide circular code is

(i) maximal (in the sense that it cannot be contained in a trinucleotide circular code
with more words);

(ii) maximum (in the sense that no trinucleotide circular code can contain more than 20
words).

We now recall some definitions and previous results related to the trinucleotide circu-
lar code necklaces. In the sequel, l1, l2, . . . , ln are letters inA4, d1, d2, . . . , dn are diletters inA2

4,
and n is an integer satisfying n ≥ 2.

Definition 2.8. Letter Diletter Necklaces (LDN): we say that the ordered sequence l1, d1, l2,d2,
. . . , dn−1, ln, dn is an nLDN for a subset X ⊂ A3

4 if l1d1, l2d2, . . . , lndn ∈ X and d1l2, d2l3,. . . ,
dn−1ln ∈ X.

Definition 2.9. Letter Diletter Continued Necklaces (LDCN): we say that the ordered
sequence l1, d1, l2, d2, . . . , dn−1, ln, dn, ln+1 is an (n+1)LDCN for a subsetX ⊂ A3

4 if l1d1, l2d2,. . . ,
lndn ∈ X and d1l2, d2l3, . . . , dn−1ln, dnln+1 ∈ X.

Definition 2.10. Diletter Letter Necklaces (DLN): we say that the ordered sequence d1, l1, d2,l2,
. . . , ln−1, dn, ln is an nDLN for a subset X ⊂ A3

4 if d1l1, d2l2, . . . , dnln ∈ X and l1d2, l2d3,
. . . , ln−1dn ∈ X.

Definition 2.11. Diletter Letter Continued Necklaces (DLCN): we say that the ordered
sequence d1, l1, d2, l2, . . . , ln−1, dn, ln, dn+1 is an (n+1)DLCN for a subsetX ⊂ A3

4 if d1l1, d2l2, . . .,
dnln ∈ X and l1d2, l2d3, . . . , ln−1dn, lndn+1 ∈ X.
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Proposition 2.12 (see [17]). Let X be a trinucleotide code. The following conditions are equivalent:

(i) X is a circular code;

(ii) X has no 5LDCN.

Proposition 2.13 (see [18]). Let X be a trinucleotide code. The following conditions are equivalent:

(i) X is a comma-free code.

(ii) X has no 2LDN and no 2DLN.

Definition 2.14. Let X be a trinucleotide code. For any integer n ∈ {2, 3, 4, 5}, we say that X
belongs to the class CnLDN if X has no nLDN and that X belongs to the class CnDLN if X has
no nDLN. Similarly, for any integer n ∈ {3, 4, 5}, we say that X belongs to the class CnLDCN

if X has no nLDCN and that X belongs to the class CnDLCN if X has no nDLCN.

Notation 1. For any integer n ∈ {2, 3, 4, 5}, In = CnLDN ∩ CnDLN and Un = CnLDN ∪ CnDLN .
Similarly, for any integer n ∈ {3, 4, 5}, InC = CnLDCN ∩CnDLCN andUnC = CnLDCN ∪CnDLCN .

Proposition 2.15 (see [23]). The following chains of inclusions hold:

(i) C2LDN ⊂ C3LDCN ⊂ C3LDN ⊂ C4LDCN ⊂ C4LDN ⊂ C5LDCN ⊂ C5LDN ;

(ii) C2DLN ⊂ C3DLCN ⊂ C3DLN ⊂ C4DLCN ⊂ C4DLN ⊂ C5DLCN ⊂ C5DLN ;

(iii) C2LDN ⊂ C3DLCN ⊂ C3LDN ⊂ C4DLCN ⊂ C4LDN ⊂ C5DLCN ⊂ C5LDN ;

(iv) C2DLN ⊂ C3LDCN ⊂ C3DLN ⊂ C4LDCN ⊂ C4DLN ⊂ C5LDCN ⊂ C5DLN ;

(v) I2 ⊂ I3C ⊂ I3 ⊂ I4C ⊂ I4 ⊂ I5C ⊂ I5;

(vi) U2 ⊂ U3C ⊂ U3 ⊂ U4C ⊂ U4 ⊂ U5C ⊂ U5.

Remark 2.16. By Proposition 2.13, the chain of inclusions of Proposition 2.15 (v) begins with
I2 which is the class of comma-free codes.

Proposition 2.17. With 20-trinucleotide circular codes, the following chains of inclusions and equal-
ities hold:

I2 ⊂ U2 = I3C ⊂ U3C = I3 ⊂ U3 = I4C ⊂ U4C = I4 ⊂ U4 = I5C ⊂ U5C = I5 = U5.
(2.1)

3. Strong Trinucleotide Circular Codes

We introduce new definitions which impose very strong conditions on the words of a subset
of A3

4. These word subsets, strongly constrained, are indeed new circular codes which are
stronger than the trinucleotide comma-free codes according to the following propositions.

Definition 3.1. A subset X of A3
4 has the DLD property if, for any l1, l2, l3, l

′
1, l

′
2, l

′
3 ∈ A4, the

conditions l1l2l3 ∈ X and l′1l
′
2l
′
3 ∈ X imply l1 /= l′3.
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No letter of A4 can occur in the first position of a trinucleotide of X when it is also in
the last position of another trinucleotide of X.

Definition 3.2. A subset X of A3
4 has the LDL property if, for any l1, l

′
1 ∈ A4, d1, d

′
1 ∈ A2

4, the
conditions l1d1 ∈ X and d′

1l
′
1 ∈ X imply d1 /=d′

1.

No diletter of A2
4 can occur as a prefix of a trinucleotide of X when it is also a suffix of

another trinucleotide of X.

Remark 3.3. The trinucleotide code {ACG,GTA} is not a DLD-strong trinucleotide circular
code but it is a LDL-strong trinucleotide circular code. The trinucleotide code {ACG,CGT}
is not a LDL-strong trinucleotide circular code but it is a DLD-strong trinucleotide circular
code.

Therefore, the class of DLD-strong trinucleotide circular codes is different from the
class of LDL-strong trinucleotide circular codes. However, both are very particular cases of
comma-free codes according to the following propositions.

Proposition 3.4. A DLD-strong trinucleotide circular code overA4 is comma-free.

Proof. Suppose that X is a DLD-strong trinucleotide circular code and, by way of contradic-
tion, that it is not comma-free. Then, there exist two trinucleotides xyz, x′y′z′ ∈ X such that
either yzx′ or zx′y′ are inX. In the first case, x′ is a prefix of x′y′z′ and a suffix of yzx′ while in
the second case, z is a prefix of zx′y′ and a suffix of xyz. In both cases, X is not aDLD-strong
circular code. This is a contradiction.

Proposition 3.5. A LDL-strong trinucleotide circular code overA4 is comma-free.

Proof. Suppose that X is a LDL-strong trinucleotide circular code and, by way of contradic-
tion, that it is not comma-free. Then, there exist two trinucleotides xyz, x′y′z′ ∈ X such that
either yzx′ or zx′y′ are in X. In the first case, yz is a prefix of yzx′ and a suffix of xyz while
in the second case, x′y′ is a prefix of x′y′z′ and a suffix of zx′y′. In both cases, X is not a
LDL-strong circular code. This is a contradiction.

Remark 3.6. There are trinucleotide comma-free codes which are not DLD-strong trinu-
cleotide circular codes. Example: {ACA}.

Remark 3.7. There are trinucleotide comma-free codeswhich are not LDL-strong trinucleotide
circular codes. Example: {ACG,CGT}.

The two following propositions are obvious.

Proposition 3.8. For any letters x, y, z ∈ A4, a trinucleotide singleton xyz ∈ A3
4 is a DLD-strong

trinucleotide circular code overA4 if and only if x/= z.

Proposition 3.9. For any letters x, y, z ∈ A4, a trinucleotide singleton xyz ∈ A3
4 is a LDL-strong

trinucleotide circular code overA4 if and only if at least two of its letters are different.

Remark 3.3 showed that DLD-strong and LDL-strong trinucleotide circular codes
are different classes. The following propositions give more information about their differ-
ence.
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Proposition 3.10. No 20-trinucleotide circular code can be aDLD-strong trinucleotide circular code.

Proof. Suppose, by way of contradiction, that a 20-trinucleotide circular codeX is also aDLD-
strong trinucleotide circular code. Let P (resp.S) be the set containing the letters l1 (resp. l3) of
the trinucleotides l1l2l3 ofX. We have P∩S = ∅ (otherwise,X has not theDLD property), |P | >
1 (otherwise, X has at most 16 elements) and |S| > 1 (otherwise, X has at most 16 elements).
Using Pigeon Hole Principle, it follows thatA4 has two disjoint subsets, say {a, b} and {c, d},
such that P = {a, b} and S = {c, d}. Consequently, X has at most the following elements:
aAc, aCc, aGc, aTc, aAd, aCd, aGd, aTd, bAc, bCc, bGc, bTc, bAd, bCd, bGd, bTd, so we have
again at most 16 elements. This is a contradiction.

Proposition 3.11. A 20-trinucleotide circular code is comma-free if and only if it is a LDL-strong
trinucleotide circular code.

Proof. If. By Proposition 3.5, any LDL-strong trinucleotide circular codeX is also comma-free.
Only if. Suppose that X is comma-free and, by way of contradiction, that it is not a

LDL-strong trinucleotide circular code. Then, there exist two letters a, b ∈ A4 and a diletter
d1 ∈ A2

4 such that ad1, d1b ∈ X. As X cannot contain two elements in the same conjugation
class, the condition a/= b holds. So, A4 − {a, b} contains exactly two elements, say c and d.

X being a comma-free code, X must contain exactly one trinucleotide in each of the
20 conjugation classes. By considering the conjugation class {aac, aca, caa}, only aac can
belong to X. Indeed, {aca, ad1, d1b} and {caa, ad1, d1b} are not comma-free codes as the
concatenations aca.d1b and caa.d1b lead to ad1 in contradiction with Definition 2.2. With
the conjugation class {bbc, bcb, cbb}, only cbb can belong to X. Indeed, {bbc, ad1, d1b} and
{bcb, ad1, d1b} are not comma-free codes as the concatenations ad1.bbc and ad1.bcb lead to
d1b in contradiction with Definition 2.2. Similarly, aad and dbb must belong to X. Moreover,
with the conjugation class {acb, cba, bac}, only acb can belong to X.

Now, we have:

(i) acd /∈ X (otherwise {aac, acd, dbb} is not a comma-free code);

(ii) cda /∈ X (otherwise {cda, acb, cbb} is not a comma-free code);

(iii) dac /∈ X (otherwise {aad, dac, acb} is not a comma-free code).

So, no element in the conjugation class {acd, cda, dac} belongs to X. This is a contradiction.

4. Extended Hierarchy

The previous hierarchy of trinucleotide circular codes [23] is now extended with these new
DLD and LDL codes. By Proposition 3.10, the set of DLD-strong 20-trinucleotide circular
codes is empty. Moreover, by Proposition 3.11, the set of LDL-strong 20-trinucleotide circular
codes coincide with the set of trinucleotide comma-free codes (set I2). With the notations In

and Un (Notation 1), the hierarchy of the above recalled Proposition 2.17 is extended with
these new strong trinucleotide circular codes as follows.

Proposition 4.1. With the 20-trinucleotide circular codes, the following chains of inclusions and
equalities hold:

∅ = LDL ∩DLD ⊂ LDL ∪DLD = LDL = I2 ⊂ U2 = I3C ⊂ U3C = I3 ⊂ U3

= I4C ⊂ U4C = I4 ⊂ U4 = I5C ⊂ U5C = I5 = U5.
(4.1)
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5. Coding of Trinucleotide Circular Codes with
the Symmetric Group Σn

We use the symmetric group Σn (e.g., [24]) to develop a coding of trinucleotide circular codes.
A permutation of a setX is a bijection σ fromX into itself. Given a positive integer n, [n]

denotes the set {0, 1, . . . , n−1}. As [n] has a natural total order 0 < 1 < · · · < n−1, a permutation
σ of [n] is the word σ(0)σ(1) · · ·σ(n − 1) giving the successive images of the elements of [n].
Analogously, {a[n]} denotes any totally ordered set {a0, a1, . . . , an−1}, a0 < a1 < · · · < an−1, of
n elements. Also as a consequence of the total order, a permutation σ of {a[n]} is the word
aσ(0)aσ(1) . . . aσ(n−1) and by abuse of language, σ can also be considered as a permutation of
[n]. The symmetric group Σn denotes all the permutations of {a[n]}.

Recall that |X| denotes the number of elements of a set X. Recall that if w =
w(0)w(1) · · ·w(k − 1) is a word of length k on the alphabet A, then Alph(w) =
{w(0), w(1), . . . , w(k − 1)}. So, Alph(w) is the set of the letters of A having at least one
occurrence inw.

A permutation of {a[n]} can be represented by a word of length n−1. Clearly, the prefix
of length n − 1 of the word aσ(0) . . . aσ(n−1) uniquely determines σ. There are also four other
cases to represent the elements of Σn by words of length n − 1: i < j and σ(i) < σ(j); i < j
and σ(i) > σ(j); i > j and σ(i) < σ(j); i > j and σ(i) > σ(j). We begin with the case i < j and
σ(i) > σ(j).

For a given h ∈ [n − 1], {a[h]} denotes the subset of [n − 1] containing its first
h elements a0, . . . , ah−1. For a given i ∈ [n] and for a permutation σ of {a[n]}, the set
rσi is defined as follows: rσi = {a[σ(i)]} ∩ Alph(aσ(i+1) · · ·aσ(n−1)) contains the elements of
{a[σ(i)]} = {a0, . . . , aσ(i)−1} having one occurrence in aσ(i+1) · · ·aσ(n−1), the suffix of length n−i−1
of aσ(0) · · ·aσ(n−1). Consequently, |rσi | counts the number of elements j of [n] such that i < j
and aσ(i) > aσ(j). In other words, |rσi | counts the number of elements ak of {a[n]} such that
ak < aσ(i) and ak is on the right of aσ(i) in the word aσ(0) · · ·aσ(n−1). Put r(i) = |rσi | and let the
code of σ be the word r(0)r(1) · · · r(n − 1) denoted by r(σ).

For a given permutation σ, r(0) is the number of the letters of aσ(0) · · ·aσ(n−1) that are
strictly smaller than aσ(0) or equivalently, the number of the elements of the alphabet {a[n]}
that are strictly smaller than the leftmost letter aσ(0), and by the choice of the alphabet, this
number is exactly σ(0) and belongs to [n − 0] = [n]. Then, r(1) is the number of the letters of
aσ(0) · · ·aσ(n−1) that are strictly smaller than aσ(1) and on the right of aσ(1) or equivalently, the
number of the elements of the alphabet {a[n]} − {σ(0)} that are strictly smaller than aσ(1) and
this number belongs to [n − 1]. And so on until r(n − 2) which is the number of the letters of
aσ(0) · · ·aσ(n−1) that are strictly smaller than aσ(n−2) and on the right of aσ(n−2) or equivalently,
the number of the elements of the two-letter alphabet {a[n]} − {σ(0), . . . , σ(n − 3)} = {σ(n −
2), σ(n−1)} that are strictly smaller than aσ(n−2) and this number belongs to [n−(n−2)] = [2],
that is, with only values 0 or 1. Finally, r(n − 1) is the number of the letters of aσ(0) · · ·aσ(n−1)
that are strictly smaller than aσ(n−1) and on the right of aσ(n−1) or equivalently, the number of
the elements of the one-letter alphabet {a[n]}−{σ(0), . . . , σ(n−2)} = {σ(n−1)} that are strictly
smaller than aσ(n−1) and this number belongs to [n − (n − 1)] = [1], that is, with value equal
to 0. Thus, r(0) ∈ [n], r(1) ∈ [n − 1], . . . , r(i) ∈ [n − i] and r(0)r(1) · · · r(n − 1) belongs to a set
of cardinality n! which is exactly the cardinality of Σn.

Clearly, if σ and τ are two different permutations of {a[n]}, then r(σ)/= r(τ). Indeed,
let k be the maximum integer such that aσ(k) = aτ(k). Without loss of generality, suppose that
aσ(k+1) < aτ(k+1). As Alph(aσ(k+1) · · ·aσ(n−1)) = Alph(aτ(k+1) · · ·aτ(n−1)), then |rσk+1| < |rτk+1|. So,
r(σ) is different from r(τ).
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Example 5.1. The code of the permutation σ = a4a6a2a1a3a0a5 of {a[7]} is r(σ) = 452110.

The correspondence ρ : σ → r(σ) is an injective map between two finite sets of same
cardinality (n!). So ρ is a bijection and to each r(σ) corresponds a unique σ. The following
algorithm allows the permutation σ from the code r(σ) to be retrieved.

Algorithm 1 (principle). Initialisation aσ(0) = ar(0); only one element, say aα, in {a[n]} − {aσ(0)}
can verify r(1) = |{aζ ∈ {a[n]} − {aσ(0)} | aα > aζ}|, so aσ(1) = aα; only one element, say aβ, in
{a[n]} − {aσ(0), aσ(1)} can verify r(2) = |{aζ ∈ {a[n]} − {aσ(0), aσ(1)} | aβ > aζ}|, so aσ(2) = aβ;
repeat this procedure until all the elements {aσ(0), . . . , aσ(n−2)} are found; finally aσ(n−1) is the
unique value in {a[n]} − {aσ(0), . . . , aσ(n−2)}.

Remark 5.2. In general, r(i+1) · · · r(n−1) is the code of the permutation aσ(i+1) · · ·aσ(n−1) on the
totally ordered alphabet {aσ(i+1), . . . , aσ(n−1)}.

Example 5.3. Consider the previous example with the permutation σ of {a[7]} having the code
r(σ) = 452110. As r(0) = 4, then aσ(0) = a4; aσ(1) = a6 as {a0, a1, a2, a3, a5, a6} contains r(1) = 5
elements strictly smaller; aσ(2) = a2 as {a0, a1, a2, a3, a5} contains r(2) = 2 elements strictly
smaller; aσ(3) = a1 as {a0, a1, a3, a5} contains r(3) = 1 element strictly smaller; aσ(4) = a3 as
{a0, a3, a5} contains r(4) = 1 element strictly smaller; aσ(5) = a0 as {a0, a5} contains r(5) = 0
element strictly smaller; finally, aσ(6) = a5 as {a[7]} − {aσ(0), aσ(1), aσ(2), aσ(3), aσ(4), aσ(5)} =
{a[7]} − {a4, a6, a2, a1, a3, a0} = {a5}. So, the permutation σ is a4a6a2a1a3a0a5.

For a given permutation σ, we can also define the sets lσi = {a[σ(i)]} ∩
Alph(aσ(0) · · ·aσ(i)−1), Rσ

i = ({a[n]} − {a[σ(i)+1]}) ∩ Alph(aσ(i+1) · · ·aσ(n−1)) and Lσ
i = ({a[n]} −

{a[σ(i)+1]}) ∩ Alph(aσ(0) · · ·aσ(n−1)). The set lσi consists of the elements of {a[σ(i)]} = {aσ(0), . . . ,
aσ(i)−1} that have one occurrence in the prefix of length i of aσ(0) · · ·aσ(n−1). Its cardinality |lσi |
counts the number of elements j of [n] such that j < i and σ(j) < σ(i) or, in other words,
|lσi | counts the number of elements ak of {a[n]} such that ak < aσ(i) and ak is on the left of
aσ(i) in aσ(0) · · ·aσ(n−1). Similarly, the set Rσ

i consists of the elements of {a[n]} − {a[σ(i)+1]} =
{aσ(i)+1, . . . , an−1} that have one occurrence in aσ(i+1) · · ·aσ(n−1), the suffix of length n − i − 1 of
aσ(0) · · ·aσ(n−1). Its cardinality |Rσ

i | counts the number of elements j of [n] such that j > i and
σ(j) > σ(i) or, in other words, |Rσ

i | counts the number of elements ak of {a[n]} such that
ak > aσ(i) and ak is on the right of aσ(i) in aσ(0) · · ·aσ(n−1). Finally, the set Lσ

i consists of the
elements of {a[n]} − {a[σ(i)+1]} = {aσ(i)+1, . . . , an−1} that have one occurrence in the prefix of
length i of aσ(0) · · ·aσ(n−1). Its cardinality |Lσ

i | counts the number of elements j of [n] such that
j < i and σ(j) > σ(i) or, in other words, |Lσ

i | counts the number of elements ak of {a[n]} such
that ak > aσ(i) and ak is on the left of aσ(i) in aσ(0) · · ·aσ(n−1).

There are trivial relations

lσi + Lσ
i = i,

rσi + Rσ
i = n − i − 1,

rσi + lσi = σ(i),

Rσ
i + Lσ

i = n − σ(i) − 1.

(5.1)

For a given permutation, lσi , R
σ
i , and Lσ

i allow the construction of three other codes,
namely, l(0)l(1) · · · l(n − 1), R(0)R(1) · · ·R(n − 1) and L(0)L(1) · · ·L(n− 1), which have similar
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Table 1: (a) The first column contains the permutations σ of the symmetric group Σ2 on the alphabet
{a[2]} = {a0, a1} and the second column contains their codes r(σ). (b) The first column contains the
permutations σ of the symmetric group Σ3 on the alphabet {a[3]} = {a0, a1, a2} and the second column
their codes r(σ). (c) The first column contains the permutations σ of the symmetric group Σ4 on the
alphabet {a[4]} = {a0, a1 , a2, a3} and the second column contains their codes r(σ). This table easily allows
to determine the codes for permutations on any other totally ordered four-letter alphabet, in particular the
alphabet [4] = {0, 1, 2, 3} (0 < 1 < 2 < 3), the genetic alphabet A4 (A < C < G < T) and the alphabet
{a, b, c, d} (a < b < c < d). For example, 211 is the code for 2130 on the alphabet [4], for GCTA on the
alphabet A4 and for cbda on the alphabet {a, b, c, d}.

(a)

Permutation σ Code r(σ)
a0a1 0
a1a0 1

(b)

Permutation σ Code r(σ)
a0a1a2 00
a0a2a1 01
a1a0a2 10
a1a2a0 11
a2a0a1 20
a2a1a0 21

(c)

Permutation σ Code r(σ)
a0a1a2a3 000
a0a1a3a2 001
a0a2a1a3 010
a0a2a3a1 011
a0a3a1a2 020
a0a3a2a1 021
a1a0a2a3 100
a1a0a3a2 101
a1a2a0a3 110
a1a2a3a0 111
a1a3a0a2 120
a1a3a2a0 121
a2a0a1a3 200
a2a0a3a1 201
a2a1a0a3 210
a2a1a3a0 211
a2a3a0a1 220
a2a3a1a0 221
a3a0a1a2 300
a3a0a2a1 301
a3a1a0a2 310
a3a1a2a0 311
a3a2a0a1 320
a3a2a1a0 321
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Table 2: (a) The four classes having each six LDL-strong 20-trinucleotide circular codes. Each class is de-
scribed by its pattern and the five codes of the permutations of the symmetric group Σ4 on the pattern
allow the other five LDL-strong 20-trinucleotide circular codes of the class to be deduced. (b) The 16 classes
having each 12 LDL-strong 20-trinucleotide circular codes. Each class is described by its pattern and the
11 codes of the permutations of the symmetric group Σ4 on the pattern allow the other 11 LDL-strong
20-trinucleotide circular codes of the class to be deduced. (c) The eight classes having each 24 LDL-strong
20-trinucleotide circular codes. In this case, each class is only described by its pattern as the other 23 LDL-
strong 20-trinucleotide circular codes are obtained with the 23 permutations of the symmetric group Σ4.

(a)

C1 : aab, aac, aad, bab, bac, bad, bbc, bda, bdb, bdc, cab, cac, cad, ccb, cda, cdb, cdc, dda, ddb, ddc
Codes of C1 : 211, 220, 221, 301, 320
C2 : aab, aac, aad, bab, bac, bad, bca, bcb, bcd, bdd, cca, ccb, ccd, dab, dac, dad, dbb, dca, dcb, dcd
Codes of C2 : 201, 221, 311, 320, 321
C3 : aab, aca, acb, acc, ada, adb, add, bba, bca, bcb, bcc, bda, bdb, bdd, cda, cdb, cdd, dca, dcb, dcc
Codes of C3 : 120, 121, 310, 311, 321
C4 : aba, abb, abc, acc, ada, adc, add, bda, bdc, bdd, caa, cba, cbb, cbc, cda, cdc, cdd, dba, dbb, dbc
Codes of C4 : 201, 221, 311, 320, 321

(b)

C5 : aab, aac, aad, bab, bac, bad, bbc, bbd, cab, cac, cad, cbc, cbd, ccd, dab, dac, dad, dbc, dbd, ddc
Codes of C5 : 020, 021, 101, 120, 121, 300, 301, 310, 311, 320, 321
C6 : aab, aac, aad, bab, bac, bad, bbc, bbd, cab, cac, cad, cbc, cbd, cdb, cdc, dab, dac, dad, ddb, ddc
Codes of C6 : 011, 020, 201, 220, 221, 300, 301, 310, 311, 320, 321
C7 : aab, aac, aad, bab, bac, bad, bbc, bbd, cab, cac, cad, cbc, cbd, cdd, dab, dac, dad, dbc, dbd, dcc
Codes of C7 : 020, 021, 101, 120, 121, 300, 301, 310, 311, 320, 321
C8 : aab, aac, aad, bab, bac, bad, bbc, bda, bdb, bdc, cab, cac, cad, cbc, cda, cdb, cdc, dda, ddb, ddc
Codes of C8 : 111, 120, 121, 211, 220, 221, 300, 301, 310, 320, 321
C9 : aab, aac, aad, bab, bac, bad, bbc, bdb, bdc, bdd, cab, cac, cad, ccb, cdb, cdc, cdd, dab, dac, dad
Codes of C9 : 011, 021, 200, 201, 210, 211, 220, 221, 301, 320, 321
C10 : aab, aac, aad, bab, bac, bad, bca, bcb, bcd, bdb, bdd, cca, ccb, ccd, dab, dac, dad, dca, dcb, dcd
Codes of C10 : 110, 111, 121, 200, 201, 211, 220, 221, 311, 320, 321
C11 : aab, aac, aad, bab, bac, bad, bcb, bcc, bcd, bdd, cab, cac, cad, dab, dac, dad, dbb, dcb, dcc, dcd
Codes of C11 : 011, 020, 201, 220, 221, 300, 301, 310, 311, 320, 321
C12 : aab, aac, aad, bab, bac, bad, bcb, bcc, bdb, bdd, cab, cac, cad, cdb, cdd, dab, dac, dad, dcb, dcc
Codes of C12 : 020, 021, 101, 120, 121, 300, 301, 310, 311, 320, 321
C13 : aab, aac, ada, adb, adc, add, bab, bac, bbc, bda, bdb, bdc, bdd, cab, cac, ccb, cda, cdb, cdc, cdd
Codes of C13 : 011, 021, 200, 201, 210, 211, 220, 221, 301, 320, 321
C14 : aab, aac, ada, adb, adc, add, bab, bac, bca, bcb, bda, bdb, bdc, bdd, cca, ccb, cda, cdb, cdc, cdd
Codes of C14 : 110, 111, 121, 200, 201, 211, 220, 221, 311, 320, 321
C15 : aab, aac, ada, adb, adc, add, bab, bac, bcc, bda, bdb, bdc, bdd, cab, cac, cbb, cda, cdb, cdc, cdd
Codes of C15 : 011, 021, 200, 201, 210, 211, 220, 221, 301, 320, 321
C16 : aab, aca, acb, acc, acd, ada, adb, add, bba, bca, bcb, bcc, bcd, bda, bdb, bdd, dca, dcb, dcc, dcd
Codes of C16 : 101, 110, 111, 120, 121, 210, 211, 221, 310, 311, 321
C17 : aab, aca, acb, acc, ada, adb, add, bab, bca, bcb, bcc, bda, bdb, bdd, cda, cdb, cdd, dca, dcb, dcc
Codes of C17 : 020, 021, 101, 120, 121, 300, 301, 310, 311, 320, 321
C18 : aba, abb, abc, abd, aca, acc, acd, add, cba, cbb, cbc, cbd, daa, dba, dbb, dbc, dbd, dca, dcc, dcd
Codes of C18 : 111, 120, 121, 211, 220, 221, 300, 301, 310, 320, 321
C19 : aba, abb, abc, abd, aca, acc, ada, add, cba, cbb, cbc, cbd, cda, cdd, dba, dbb, dbc, dbd, dca, dcc
Codes of C19 : 020, 021, 101, 120, 121, 300, 301, 310, 311, 320, 321
C20 : aba, abb, abc, aca, acc, ada, adc, add, bda, bdc, bdd, cba, cbb, cbc, cda, cdc, cdd, dba, dbb, dbc
Codes of C20 : 011, 020, 201, 220, 221, 300, 301, 310, 311, 320, 321
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(c)

C21 : aab, aac, aad, bab, bac, bad, bbc, bbd, cab, cac, cad, cbc, cbd, ccd, dab, dac, dad, dbc, dbd, dcd
C22 : aab, aac, aad, bab, bac, bad, bbc, bbd, cab, cac, cad, cbc, cbd, cdc, cdd, dab, dac, dad, dbc, dbd
C23 : aab, aac, aad, bab, bac, bad, bbc, bdb, bdc, bdd, cab, cac, cad, cbc, cdb, cdc, cdd, dab, dac, dad
C24 : aab, aac, aad, bab, bac, bad, bcb, bcc, bcd, bdb, bdd, cab, cac, cad, dab, dac, dad, dcb, dcc, dcd
C25 : aab, aac, ada, adb, adc, add, bab, bac, bbc, bda, bdb, bdc, bdd, cab, cac, cbc, cda, cdb, cdc, cdd
C26 : aab, aac, ada, adb, adc, add, bab, bac, bcb, bcc, bda, bdb, bdc, bdd, cab, cac, cda, cdb, cdc, cdd
C27 : aab, aca, acb, acc, acd, ada, adb, add, bab, bca, bcb, bcc, bcd, bda, bdb, bdd, dca, dcb, dcc, dcd
C28 : aba, abb, abc, abd, aca, acc, acd, ada, add, cba, cbb, cbc, cbd, dba, dbb, dbc, dbd, dca, dcc, dcd

properties to the code r(0)r(1) · · · r(n−1). These relations can retrievemore efficiently the per-
mutation σ from the code r(σ). For the interesting case n = 4 of this paper, an efficient algo-
rithm is given.

Algorithm 2 (principle). Initialisation aσ(0) = ar(0); Consider {σ(1), σ(2), σ(3)} and let {σ(1),
σ(2), σ(3)} = {α, β, γ}with α < β < γ .

If r(1) = 2, then aσ(1) = aγ and, if r(2) = 1, then aσ(2)aσ(3) = aβaα or, if r(2) = 0, then
aσ(2)aσ(3) = aαaβ.

If r(1) = 1, then aσ(1) = aβ and, if r(2) = 1, then aσ(2)aσ(3) = aγaα or, if r(2) = 0, then
aσ(2)aσ(3) = aαaγ .

If r(1) = 0, then aσ(1) = aα and, if r(2) = 1, then aσ(2)aσ(3) = aγaβ or, if r(2) = 0, then
aσ(2)aσ(3) = aβaγ .

The number r(1)r(2) is the code of the permutation aσ(α)aσ(β)aσ(γ) on {aα, aβ, aγ}.

Example 5.4. Consider the permutation σ of {a[4]} having 111 as its code. Clearly, aσ(0) = a1.
Then, the considered set {σ(1), σ(2), σ(3)} = {α, β, γ} is {a0, a2, a3}. As r(1) = 1, then aσ(1) =
aβ = a2 and as r(2) = 1, then aσ(2)aσ(3) = aγaα = a3a0. So, the permutation σ is a1a2a3a0.

Finally, the code of a permutation σ(A)σ(C)σ(G)σ(T) on the genetic alphabetA4 (A <
C < G < T) can easily be computed by puttingA = a0,C = a1,G = a2 and T = a3. Similarly, for
the totally ordered alphabet {a, b, c, d} (a < b < c < d) in Section 5, the code of a permutation
is obtained by putting a = a0, b = a1, c = a2 and d = a3.

6. Role of the Symmetric Group Σ4

We put a = A, b = C, c = G and d = T and identify the elements of the symmetric group Σ4

over {a, b, c, d} (a < b < c < d) with the 24 permutations of the word abcd. We denote the
permutations by their codes (Table 1(c)).

We wish to point out that a computer calculus confirms that the 20-trinucleotide com-
ma-free codes are exactly the LDL-strong 20-trinucleotide circular codes. These codes are
partitioned into 28 classes: C1, C2, . . . , C28. There are four classes containing six codes each
(Table 2(a)), 16 classes containing 12 codes each (Table 2(b)), and eight classes containing 24
codes each (Table 2(c)). For each class, we give explicitely the list (in lexicographical order) of
trinucleotides: the first (in lexicographical order) LDL-strong 20-trinucleotide circular code
X (pattern of the class) and the codes of the permutations of Σ4 (Table 1(c)) on X giving the
other LDL-strong 20-trinucleotide circular codes of the class. The classes are lexicographically
ordered according to the patterns of classes.
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Table 3: The prefixes and suffixes of the pattern of the 28 classes of LDL-strong 20-trinucleotide circular
codes (Tables 2(a)–2(c)). For each pattern X, the subset L1 (resp. L3) of {a, b, c, d} consists of the letters l1
(resp. l3) that appear at least once in prefix (resp. suffix) position of the trinucleotides of X. Similarly, the
subset D1 (resp. D2) of {a, b, c, d}2 consists of the diletters d1 (resp. d2) that appear at least once in prefix
(resp. suffix) position of the trinucleotides of X.

Codes L1 L3 D1 D2

C1 a, b, c, d a, b, c, d aa, ba, bb, bd, ca, cc, cd, dd ab, ac, ad, bc, cb, da, db, dc

C2 a, b, c, d a, b, c, d aa, ba, bc, bd, cc, da, db, dc ab, ac, ad, bb, ca, cb, cd, dd

C3 a, b, c, d a, b, c, d aa, ac, ad, bb, bc, bd, cd, dc ab, ba, ca, cb, cc, da, db, dd

C4 a, b, c, d a, b, c, d ab, ac, ad, bd, ca, cb, cd, db aa, ba, bb, bc, cc, da, dc, dd

C5 a, b, c, d b, c, d aa, ba, bb, ca, cb, cc, da, db, dd ab, ac, ad, bc, bd, cd, dc

C6 a, b, c, d b, c, d aa, ba, bb, ca, cb, cd, da, dd ab, ac, ad, bc, bd, db, dc

C7 a, b, c, d b, c, d aa, ba, bb, ca, cb, cd, da, db, dc ab, ac, ad, bc, bd, cc, dd

C8 a, b, c, d a, b, c, d aa, ba, bb, bd, ca, cb, cd, dd ab, ac, ad, bc, da, db, dc

C9 a, b, c, d b, c, d aa, ba, bb, bd, ca, cc, cd, da ab, ac, ad, bc, cb, db, dc, dd

C10 a, b, c, d a, b, c, d aa, ba, bc, bd, cc, da, dc ab, ac, ad, ca, cb, cd, db, dd

C11 a, b, c, d b, c, d aa, ba, bc, bd, ca, da, db, dc ab, ac, ad, bb, cb, cc, cd, dd

C12 a, b, c, d b, c, d aa, ba, bc, bd, ca, cd, da, dc ab, ac, ad, cb, cc, db, dd

C13 a, b, c a, b, c, d aa, ad, ba, bb, bd, ca, cc, cd ab, ac, bc, cb, da, db, dc, dd

C14 a, b, c a, b, c, d aa, ad, ba, bc, bd, cc, cd ab, ac, ca, cb, da, db, dc, dd

C15 a, b, c a, b, c, d aa, ad, ba, bc, bd, ca, cb, cd ab, ac, bb, cc, da, db, dc, dd

C16 a, b, d a, b, c, d aa, ac, ad, bb, bc, bd, dc ab, ba, ca, cb, cc, cd, da, db, dd

C17 a, b, c, d a, b, c, d aa, ac, ad, ba, bc, bd, cd, dc ab, ca, cb, cc, da, db, dd

C18 a, c, d a, b, c, d ab, ac, ad, cb, da, db, dc aa, ba, bb, bc, bd, ca, cc, cd, dd

C19 a, c, d a, b, c, d ab, ac, ad, cb, cd, db, dc ba, bb, bc, bd, ca, cc, da, dd

C20 a, b, c, d a, b, c, d ab, ac, ad, bd, cb, cd, db ba, bb, bc, ca, cc, da, dc, dd

C21 a, b, c, d b, c, d aa, ba, bb, ca, cb, cc, da, db, dc ab, ac, ad, bc, bd, cd

C22 a, b, c, d b, c, d aa, ba, bb, ca, cb, cd, da, db ab, ac, ad, bc, bd, dc, dd

C23 a, b, c, d b, c, d aa, ba, bb, bd, ca, cb, cd, da ab, ac, ad, bc, db, dc, dd

C24 a, b, c, d b, c, d aa, ba, bc, bd, ca, da, dc ab, ac, ad, cb, cc, cd, db, dd

C25 a, b, c a, b, c, d aa, ad, ba, bb, bd, ca, cb, cd ab, ac, bc, da, db, dc, dd

C26 a, b, c a, b, c, d aa, ad, ba, bc, bd, ca, cd ab, ac, cb, cc, da, db, dc, dd

C27 a, b, d a, b, c, d aa, ac, ad, ba, bc, bd, dc ab, ca, cb, cc, cd, da, db, dd

C28 a, c, d a, b, c, d ab, ac, ad, cb, db, dc ba, bb, bc, bd, ca, cc, cd, da, dd

Moreover, a computer calculus describes the properties of prefixes and suffixes for the
28 classes of LDL-strong 20-trinucleotide circular codes X. The set L1 is formed by the letters
l1 in the first position of the trinucleotides of X and the set L3, by the letters l3 in the last
position of the trinucleotides ofX. The setD1 is formed by the diletters d1 in prefix position of
the trinucleotides ofX and the setD2, by the diletters d2 in suffix position of the trinucleotides
of X. Eight classes have both four letters in L1 and L2 (C1–C4, C8, C10, C17, C20). Ten classes
have four letters in L1 and three letters in L2 (C5–C7, C9, C11, C12, C21–C24). Reciprocally, ten
classes have four letters in L2 and three letters in L1 (C13–C16, C18, C19, C25–C28). Three classes
have nine diletters in D1 (C5, C7, C21) and similarly, three classes have nine diletters in D2

(C16, C18, C28). Only the class C28 has six diletters inD1 and nine diletters inD2 and similarly,
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only the class C21 has six diletters in D2 and nine diletters in D1. All the sets D1 ∩ D2 are
obviously empty.

These tables and the other symmetric relations identified before (e.g., Proposition 6 of
[23]) suggest that the symmetric group Σ4 can have a very important role in the study of these
trinucleotide circular codes.
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