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a b s t r a c t

We generalize here the classical stochastic substitution models of nucleotides to genetic motifs of any

size. This generalized model gives the analytical occurrence probabilities of genetic motifs as a function

of a substitution matrix containing up to three formal parameters (substitution rates) per motif site and

of an initial occurrence probability vector of genetic motifs. The evolution direction can be direct (past-

present) or inverse (present-past). This extension has been made due to the identification of a

Kronecker relation between the nucleotide substitution matrices and the motif substitution matrices.

The evolution models for motifs of size 4 (tetranucleotides) and 5 (pentanucleotides) are now included

in the SEGM (Stochastic Evolution of Genetic Motifs) web server.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

We present here a generalization of the classical stochastic
substitution models of nucleotides to genetic motifs of any size.
The first gene evolution model was proposed by Jukes and Cantor
(1969) with 1-parameter substitution (probability a for all nucleo-
tide substitution types). It was generalized to a 2-parameter
substitution model (Kimura, 1980) (probability g for the nucleotide
transitions A !G and C !T, and probability b for the nucleotide
transversions A !C, A !T, C !G and G !T) and then, to a
3-parameter substitution model (Kimura, 1981) (probability a for
transitions, probability b for the transversion type A !T and
C !G, and probability c for the transversion type A !C and
G !T). Later, these substitution models were generalized to a
greater number of substitution parameters, e.g. a 6-parameter
substitution model with equal base frequencies (Zharkikh, 1994).

Nucleotide substitution models were extended to genetic motif
substitution models, e.g. Arqu�es and Michel (1993, 1995) for the
pioneer work. The most recent motif substitution models (Michel,
2007a–c), i.e. trinucleotide models with three substitution rates
per motif site, are based on a block matrix factorization (Tian and
Styan, 2001). However, this approach cannot be used to generalize
the substitution models to genetic motifs of any size. Indeed, the
construction of large substitution matrices and their eigenvalues
and eigenvectors determination are impossible by applying
ll rights reserved.

. Benard),
classical methods of formal calculus with the current software
(e.g. Mathematica 8.1 in 2011).

In applied mathematics, Kronecker operators are classically
involved in Markov modulated Poisson processes, e.g. in commu-
nication (Burman and Smith, 1986; Salvador et al., 2003), etc.
Thus, they were also used later in the phylogeny field involving
Markov processes, in particular to diagonalize a modulated
Markov matrix for the study of the variation in time of site-
specific substitution rate (covarion model, (Galtier and Jean-
Marie, 2004; Wang et al., 2007; Allman and Rhodes, 2009)), to
compute the dinucleotide substitution process on a sequence of a
given length (Lunter and Hein, 2004), to deduce the substitution
rate of a dinucleotide (codon, respectively) by another dinucleo-
tide (codon, respectively) from the product of substitution rates of
nucleotides between these two dinucleotides (codons, respec-
tively) (Mackiewicz et al., 2008; Darot et al., 2006), to study the n-
taxon process in a tree-based model which analyses the evolution
of vectors of states, one vector entry being associated with a taxa
(Bryant, 2009), etc. By exploring similar mathematical strategies,
a Kronecker relation allows to construct large motif substitution
matrices from nucleotide substitution matrices per site as well as
to determine the eigenvalues and eigenvectors associated with
genetic motifs from the elementary eigenvalues and eigenvectors
associated with nucleotides per site.

The SEGM (Stochastic Evolution of Genetic Motifs) web server
is a web application which was built in 2009 to study evolution
of nucleotides, dinucleotides and trinucleotides (Benard and
Michel, 2009). Based on this Kronecker property, a new version
of this SEGM web server is developed which includes several
improved functionalities (in particular a faster computation)
and an extension to motifs of size 4 (tetranucleotides) and 5
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(pentanucleotides). This research software extension allows biol-
ogists to study evolution of large motifs, for example promoter
sites (CAAT box, TATA box, etc.). The theory proposed here is valid
for genetic motifs of any size. Thus, application to hexanucleo-
tides is obviously possible, for example, to study evolution of
recoding signals stimulating read-through stop codons (Harrell
et al., 2002). The current limit is only the PC power (CPU and
memory). Indeed, the computation of the evolution probability of
one pentanucleotide leads to an analytical solution with 410

terms, i.e. more than one million of terms. The SEGM web server
is freely available at http://lsiit-bioinfo.u-strasbg.fr:8080/web
Mathematica/SEGM/SEGM.html.
2. Mathematical model

The generalized model will give here the analytical occurrence
probabilities of genetic motifs as a function of a substitution
matrix containing up to three formal parameters (substitution
rates) per motif site and of an initial occurrence probability vector
of genetic motifs. Let us consider a motif of size n on the genetic
alphabet fA,C,G,Tg. By convention, a genetic motif is represented
by its index i, 1r ir4n, according to the lexicographical order,
e.g. if n¼3 (trinucleotides), the index i¼1 refers to the first motif
AAA and i¼64 to the last motif TTT. There are 4n motifs of size n.
For all 1r ir4n, we denote by Pi(t), the occurrence probability of
motif i of size n at time tZ0.

2.1. Stochastic substitution model of genetic motifs of size n

The substitution process is handled by a differential equation
which determines the occurrence probabilities of the 4n genetic
motifs at time tZ0. The motifs mutate according to constant
substitution probabilities. Let us consider two motifs i,j of size n,
1r i,jr4n. We denote by PT ðj-iÞ, the substitution probability of
motif j into motif i during time T, T40. The occurrence prob-
ability PiðtþTÞ of motif i at time tþT is equal to the sum of
probabilities Pj(t) of the 4n motifs j at previous time t times their
substitution probabilities PT ðj-iÞ into motif i during T, i.e.

PiðtþTÞ ¼
X

j

PjðtÞPT ðj-iÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Probability of motif i to appear

: ð2:1Þ

From Eq. (2.1), the derivative with respect to time P0iðtÞ ¼ @PiðtÞ=@t

of the occurrence probability of motif i at time t is

P0iðtÞ ¼ lim
T-0

PiðtþTÞ�PiðtÞ

T

� �

¼ lim
T-0

P
jPjðtÞPT ðj-iÞ�PiðtÞ

T

� �

¼ lim
T-0

P
ja iPjðtÞPT ðj-iÞþPiðtÞPT ði-iÞ�PiðtÞ

T

� �
,

where PT ði-iÞ represents the probability that motif i does not
mutate into a different motif ja i during T. Then,

P0iðtÞ ¼ lim
T-0

P
ja iPjðtÞPT ðj-iÞ�PiðtÞð1�PT ði-iÞÞ

T

� �

¼ lim
T-0

P
ja iPjðtÞPT ðj-iÞ�PiðtÞ

P
ja iPT ði-jÞ

T

� �

¼
X
ja i

PjðtÞlim
T-0

PT ðj-iÞ

T

� �
�PiðtÞ

X
ja i

lim
T-0

PT ði-jÞ

T

� �
:

For all motifs i,j, the instantaneous substitution probability
Pðj-iÞ of motif j into motif i is assumed to be constant along
time. When T is small enough, there is no more than one motif
substitution per motif site. Then, the following approximation
applies

PT ðj-iÞ ¼
T-0

Pðj-iÞT

and consequently

lim
T-0

PT ðj-iÞ

T

� �
¼ Pðj-iÞ:

Finally, for any motif i, the derivative P0iðtÞ is

P0iðtÞ ¼
X
ja i

PjðtÞPðj-iÞ�PiðtÞ
X
ja i

Pði-jÞ

¼
X
ja i

PjðtÞPðj-iÞ�PiðtÞð1�Pði-iÞÞ

¼
X

j

PjðtÞPðj-iÞ�PiðtÞ: ð2:2Þ

Let PnðtÞ ¼ ½PiðtÞ�1r ir4n be the column vector of size 4n made of
the probabilities Pi(t) for all 1r ir4n. From Eq. (2.2), we derive a
matrix differential equation which describes the substitution
process for genetic motifs

P0nðtÞ ¼Mn � PnðtÞ�PnðtÞ

¼ ðMn�InÞ � PnðtÞ, ð2:3Þ

where the symbol � is the matrix product, In is the identity matrix
ð4n,4n

Þ and Mn ¼ ½mi,j�1r i,jr4n is the instantaneous substitution
probability matrix whose element mi,j in row i and column j refers
to the substitution probability of motif j into motif i

mi,j ¼ Pðj-iÞ:

The instantaneous substitution probability matrix Mn is stochastic
in column. Indeed, for all 1r jr4n, the elements of matrix Mn

satisfy
P

1r ir4n mi,j ¼
P

1r ir4n Pðj-iÞ ¼ 1. For all 1r jr4n, the
diagonal elements mj,j of Mn satisfy

mj,j ¼ 1�
X

1r ir4n , ia j

mi,j:

Eq. (2.3) is equal to Michel (2007a, Eq. (2)) obtained by a similar
approach.

Let An ¼Mn�In. Then, Eq. (2.3) becomes

P0nðtÞ ¼ An � PnðtÞ: ð2:4Þ

If An is diagonalizable, i.e. An ¼Qn � Dn � Q�1
n where Dn is the

spectral matrix ð4n,4n
Þ and Qn is its associated eigenvector matrix

ð4n,4n
Þ, then Eq. (2.4) becomes

P0nðtÞ ¼ Qn � Dn � Q
�1
n � PnðtÞ: ð2:5Þ

This differential Eq. (2.5) has the classical solution (Lange, 2005)

PnðtÞ ¼Qn � e
Dnt � Q�1

n � Pnð0Þ, ð2:6Þ

where eDnt is the exponential spectral matrix ð4n,4n
Þ of matrix An, Qn

is its associated eigenvector matrix ð4n,4n
Þ and Pnð0Þ is the vector of

the 4n initial occurrence probabilities of motifs at t¼0.

2.2. Substitution matrices of genetic motifs of size n

For substitution matrices of genetic motifs of size n containing
up to three substitution parameters per motif site (extension of
the 3-parameter substitution model (Kimura, 1981) of nucleo-
tides to any motifs of size n), a Kronecker property is identified for
constructing these classes of substitution matrices. This property
was found after a detailed analysis of the dinucleotide matrix d
(Michel, 2007c, Fig. 1) and the trinucleotide matrix d (Michel,
2007b, Fig. B.1).

Let k be the nucleotide site of a genetic motif of size n,
1rkrn. For a given site k, let ak, bk and ck be the parameter of
transitions A !G and C !T, transversions A !T and C !G
and transversions A !C and G !T, respectively. Thus, a motif
of size n has 3n substitution parameters.

http://lsiit-bioinfo.u-strasbg.fr:8080/webMathematica/SEGM/SEGM.html
http://lsiit-bioinfo.u-strasbg.fr:8080/webMathematica/SEGM/SEGM.html
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The substitution matrix An ð4
n,4n
Þ associated with motifs

of size n is a block matrix which is classically constructed
recursively by varying k¼n to k¼1 as follows (Michel, 2007a,
2007b, 2007c):

Ak ¼

Ak�1 cn�kþ1Ik�1 an�kþ1Ik�1 bn�kþ1Ik�1

cn�kþ1Ik�1 Ak�1 bn�kþ1Ik�1 an�kþ1Ik�1

an�kþ1Ik�1 bn�kþ1Ik�1 Ak�1 cn�kþ1Ik�1

bn�kþ1Ik�1 an�kþ1Ik�1 cn�kþ1Ik�1 Ak�1

0
BBBB@

1
CCCCA,

where Ik�1 is the identity matrix ð4k�1,4k�1
Þwith I0 ¼ 1, Ak�1 is the

recursive matrix ð4k�1,4k�1
Þ with A0 ¼�

Pn
k ¼ 1ðakþbkþckÞ and

ak,bk,ck, 1rkrn, are the substitution parameters for the kth
motif site. As the matrix An is real and symmetric, An is diag-
onalizable, i.e. An ¼ Qn � Dn � Q�1

n where Dn is the spectral matrix of
An and Qn is its associated eigenvector matrix. This property
allows the occurrence probabilities Pi(t) of motifs i to be deter-
mined, i.e. Eq. (2.6).

Let Nk, 1rkrn, be the nucleotide substitution matrix ð4,4Þ of
a site k of a motif of size n

Nk ¼

dk ck ak bk

ck dk bk ak

ak bk dk ck

bk ak ck dk

0
BBBB@

1
CCCCA,

with dk ¼�ðakþbkþckÞ. As the matrix Nk is real and symmetric,
Nk is diagonalizable for all 1rkrn

Nk ¼ R � Sk � R
�1,

where the nucleotide spectral matrix Sk of Nk is

Sk ¼

0 0 0 0

0 �2ðakþbkÞ 0 0

0 0 �2ðakþckÞ 0

0 0 0 �2ðbkþckÞ

0
BBBB@

1
CCCCA ð2:7Þ

and its associated nucleotide eigenvectors matrix R is

R¼

1 1 1 1

1 1 �1 �1

1 �1 �1 1

1 �1 1 �1

0
BBB@

1
CCCA: ð2:8Þ

Remark 1. For the substitution matrix of nucleotides (n¼1),
A1 ¼N1 ¼Q1 � D1 � Q

�1
1 ¼ R � S1 � R

�1 leading to D1 ¼ S1 and Q1 ¼ R.

We identify an interesting relation between the matrices An

and Nk.
Indeed, the recursive construction of the substitution matrix

An is similar to a Kronecker sum of nucleotide substitution
matrices Nk associated to each site k of motifs of size n. For a
motif size n40 and k40,

Ak ¼

Ak�1 cn�kþ1Ik�1 an�kþ1Ik�1 bn�kþ1Ik�1

cn�kþ1Ik�1 Ak�1 bn�kþ1Ik�1 an�kþ1Ik�1

an�kþ1Ik�1 bn�kþ1Ik�1 Ak�1 cn�kþ1Ik�1

bn�kþ1Ik�1 an�kþ1Ik�1 cn�kþ1Ik�1 Ak�1

0
BBBB@

1
CCCCA

¼

0 cn�kþ1 an�kþ1 bn�kþ1

cn�kþ1 0 bn�kþ1 an�kþ1

an�kþ1 bn�kþ1 0 cn�kþ1

bn�kþ1 an�kþ1 cn�kþ1 0

0
BBBB@

1
CCCCA#Ik�1

þ

Ak�1

Ak�1

Ak�1

Ak�1

0
BBBB@

1
CCCCA,
where the diagonal block matrix with Ak�1 on the main diagonal
is a matrix ð4k,4k

Þ. Then,

Ak ¼

0 cn�kþ1 an�kþ1 bn�kþ1

cn�kþ1 0 bn�kþ1 an�kþ1

an�kþ1 bn�kþ1 0 cn�kþ1

bn�kþ1 an�kþ1 cn�kþ1 0

0
BBBB@

1
CCCCA#Ik�1þ I1#Ak�1,

with I1 the identity matrix (4, 4). Therefore, by definition of the
Kronecker sum,

Ak ¼

0 cn�kþ1 an�kþ1 bn�kþ1

cn�kþ1 0 bn�kþ1 an�kþ1

an�kþ1 bn�kþ1 0 cn�kþ1

bn�kþ1 an�kþ1 cn�kþ1 0

0
BBBB@

1
CCCCA"Ak�1: ð2:9Þ

Moreover, by noticing that

Nn�kþ1 ¼

0 cn�kþ1 an�kþ1 bn�kþ1

cn�kþ1 0 bn�kþ1 an�kþ1

an�kþ1 bn�kþ1 0 cn�kþ1

bn�kþ1 an�kþ1 cn�kþ1 0

0
BBBB@

1
CCCCA

þ

dn�kþ1 0 0 0

0 dn�kþ1 0 0

0 0 dn�kþ1 0

0 0 0 dn�kþ1

0
BBBB@

1
CCCCA

¼

0 cn�kþ1 an�kþ1 bn�kþ1

cn�kþ1 0 bn�kþ1 an�kþ1

an�kþ1 bn�kþ1 0 cn�kþ1

bn�kþ1 an�kþ1 cn�kþ1 0

0
BBBB@

1
CCCCAþdn�kþ1 � I1,

with dn�kþ1 ¼�ðan�kþ1þbn�kþ1þcn�kþ1Þ, we can rewrite the
recursive Eq. (2.9) with the recursive Kronecker sum equation

Ak ¼ ðNn�kþ1�dn�kþ1 � I1Þ"Ak�1:

Thus,

An ¼ "
n

k ¼ 1
ðNk�dk � I1ÞþA0 � In

¼ "
n

k ¼ 1
Nk� "

n

k ¼ 1
ðdk � I1ÞþA0 � In

¼ "
n

k ¼ 1
Nk�

Xn

k ¼ 1

dk � InþA0 � In,

with A0 ¼�
Pn

k ¼ 1ðakþbkþckÞ ¼�
Pn

k ¼ 1 dk, and finally,

An ¼ "
n

k ¼ 1
Nk: ð2:10Þ

Appendix A illustrates this recurrence relation with a substitution
matrix for dinucleotides.

Classical mathematical results (Laub, 2005) allows the spectral
matrix Dn and the eigenvectors matrix Qn to be deduced from
Sk and R, respectively:

Dn ¼ "
n

k ¼ 1
Sk,

Qn ¼ #
n

k ¼ 1
R,

Q�1
n ¼ #

n

k ¼ 1
R

� ��1

¼ #
n

k ¼ 1
R�1:

8>>>>>>>><
>>>>>>>>:
Thus, the substitution matrix An can be directly determined from
the Kronecker sum of the n nucleotide spectral matrices Sk and
the Kronecker product of the n nucleotide eigenvectors matrix R
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as follows:

An ¼ #
n

k ¼ 1
R � "

n

k ¼ 1
Sk � #

n

k ¼ 1
R�1:

2.3. Analytical solutions giving the occurrence probabilities of

genetic motifs of size n at time t

By rewriting Eq. (2.6), the occurrence probability Pn(t) of
motifs of size n at time t can be expressed as a function of
elementary eigenvalues and eigenvectors associated with nucleo-
tides of each site k

PnðtÞ ¼ #
n

k ¼ 1
R � e"

n
k ¼ 1

Skt � #
n

k ¼ 1
R�1 � Pnð0Þ

¼ #
n

k ¼ 1
R � #

n

k ¼ 1
eSkt � #

n

k ¼ 1
R�1 � Pnð0Þ

¼ #
n

k ¼ 1
ðR � eSkt � R�1Þ � Pnð0Þ, ð2:11Þ

where eSkt is the exponential spectral matrix of matrices Nk.

Proposition 1. Eq. (2.11) gives the occurrence probability PnðtÞ of

motifs of size n at time t from its past one Pnð0Þ. If we express Pnð0Þ as

a function of PnðtÞ in Eq. (2.11) then equation

~PnðtÞ ¼ #
n

k ¼ 1
ðR � e�Skt � R�1Þ � ~Pnð0Þ ð2:12Þ

by replacing t by �t gives the past probability ~PnðtÞ of motifs of size n

from its current probability ~Pnð0Þ, i.e. by inverting the direction of the

evolution time t.

2.4. Analytical solution giving the occurrence probability of a genetic

motif of size n at time t

Eq. (2.11) determines the analytical solutions for all the 4n

motifs of size n. For n43 (tetranucleotides, pentanucleotides,
etc.), the resolution of this equation system on a current standard
PC needs much time and memory. Therefore, for larger motifs, we
have also derived an equation allowing to compute directly the
occurrence probability Pi1 ðtÞ of a genetic motif i1 of size n at time t.
After some algebraic manipulation, we obtain

Pi1 ðtÞ ¼
1

4n

X4n

i2 ¼ 1

 
et�
Pn

k ¼ 1
Lk ½dði2 ,kÞ�

�
X4n

i3 ¼ 1

ðPi3 ð0Þ

�
Yn

k ¼ 1

ðR½dði1,kÞ,dði2,kÞ� � R½dði2,kÞ,dði3,kÞ�ÞÞ

!
, ð2:13Þ

where Pi3 ð0Þ is the initial occurrence probability of motif i3 of
size n at t¼0, R the nucleotide eigenvectors matrix (2.8),
dðix,kÞ ¼ bðix�1Þ=4n�k

c½4�þ1, 1rdðix,kÞr4, a function associated
with the motif ix and the site k, bxc is the integer part of x, and
Lk ¼ ½0,�2ðakþbkÞ,�2ðakþckÞ,�2ðbkþckÞ� is the vector of the
four eigenvalues of the nucleotide substitution rates matrix Nk

(see matrix (2.7)) associated with the site k. The detail of algebraic
manipulation is given in Appendix B.

Remark 2. The 4n coefficients of initial occurrence probability
Pi3 ð0Þ in Eq. (2.13) are obtained by multiplying the coefficients
R½dði1,kÞ,dði2,kÞ� � R½dði2,kÞ,dði3,kÞ� of each nucleotide site k. More-
over, the 4n eigenvalues in Eq. (2.13) are obtained from the sum of
the k eigenvalues of index dði2,kÞ associated with each nucleotide
site k.

Remark 3. As R�1 ¼ 1
4 R here, the coefficients R½dði1,kÞ,dði2,kÞ� �

R½dði2,kÞ,dði3,kÞ� in Eq. (2.13) can be seen as coefficients of matrices
Ok defined in Lebre and Michel (2010) by Ok½i,j� ¼ R½i,k� � R�1½k,j�.
Remark 4. Eq. (2.13) gives a full simplified analytical solution of
the occurrence probability Pi1 ðtÞ of a motif i1 of size n at time t

composed of 4n exponents, each exponent being multiplied by a
sum of the 4n initial occurrence probabilities Pi3 ð0Þ, i.e. a total of
42n terms. Thus, an analytical solution of a pentanucleotide, for
example, has more than one million of terms.

Example 1. An example of application of Eq. (2.13) is given for
determining the analytical solution of the occurrence probability
of the dinucleotide AG at time t. The index of AG is i1 ¼ 3 among
42
¼ 16 dinucleotides ðn¼ 2Þ. The closed formula of P3ðtÞ obtained

is given in Appendix C.

Pi1 ¼ 3ðtÞ ¼
1

16

X16

i2 ¼ 1

et�
P2

k ¼ 1
Lk ½dði2 ,kÞ�

�
X16

i3 ¼ 1

Pi3 ð0Þ
� 

�
Y2

k ¼ 1

ðR½dð3,kÞ,dði2,kÞ� � R½dði2,kÞ,dði3,kÞ�ÞÞ

!

¼
1

16

X16

i2 ¼ 1

et�ðL1 ½dði2 ,1Þ�þ L2 ½dði2 ,2Þ�Þ
�

�
X16

i3 ¼ 1

ðPi3 ð0Þ � ðR½1,dði2,1Þ� � R½dði2,1Þ,dði3,1Þ�Þ

�ðR½3,dði2,2Þ� � R½dði2,2Þ,dði3,2Þ�ÞÞÞ

¼
1

16

X16

i2 ¼ 1

ðet�ðL1 ½dði2 ,1Þ�þL2 ½dði2 ,2Þ�Þ � ðP1ð0Þ

�ðR½1,dði2,1Þ� � R½dði2,1Þ,1�Þ � ðR½3,dði2,2Þ� � R½dði2,2Þ,1�Þ

þ � � � þP16ð0Þ � ðR½1,dði2,1Þ� � R½dði2,1Þ,4�Þ

�ðR½3,dði2,2Þ� � R½dði2,2Þ,4�ÞÞÞ

¼
1

16
ðet�ðL1 ½1�þ L2 ½1�Þ � ðP1ð0Þ � ðR½1,1� � R½1,1�Þ � ðR½3,1�

�R½1,1�Þþ � � � þP16ð0Þ � ðR½1,1� � R½1,4�Þ � ðR½3,1�

�R½1,4�ÞÞþet�ðL1 ½1�þL2 ½2�Þ � ðP1ð0Þ � ðR½1,1� � R½1,1�Þ

�ðR½3,2� � R½2,1�Þþ � � � þP16ð0Þ � ðR½1,1� � R½1,4�Þ

�ðR½3,2� � R½2,4�ÞÞþ � � � þet�ðL1 ½4�þL2 ½4�Þ � ðP1ð0Þ � ðR½1,4�

�R½4,1�Þ � ðR½3,4� � R½4,1�Þ

þ � � � þP16ð0Þ � ðR½1,4� � R½4,4�Þ � ðR½3,4� � R½4,4�ÞÞÞ:

3. Application: extension of the SEGM web server

3.1. Functionalities

The biomathematical model developed here allows to extend
the SEGM (Stochastic Evolution of Genetic Motifs) web server
(Benard and Michel, 2009) from trinucleotides to tetranucleotides
and pentanucleotides, to improve the computation of analytical
solutions with a faster calculus and also to add new functional-
ities, e.g. the result display. SEGM allows the determination of
analytical occurrence probabilities PðtÞ of genetic motifs of size n

(nucleotides to pentanucleotides) at time t as a function of
substitution parameters ak (A !G and C !T), bk (A !T and
C !G) and ck (A !C and G !T) per nucleotide site k and an
initial occurrence probabilities Pð0Þ of motifs at time t¼0. The
evolution direction can be direct (past-present) or inverse (pre-
sent-past). The results are displayed according to several modes
defined by the user: general analytical solutions, numerical
solutions, evolution plots and analytical solutions converted in
C, Fortran or TEX formats in order to facilitate their integration in
user-programs. Fig. 1 gives the flowchart of the SEGM web server
and an overview of its functionalities.



Fig. 1. Flowchart of the SEGM web server.
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3.2. Size and initial occurrence probabilities of genetic motifs

The size n and the initial occurrence probability vector Pð0Þ of
studied motifs of size n at time t¼0 are chosen on the homepage of
the SEGM (Fig. 2). The initial vector Pð0Þ is uploaded thanks to a xls
file containing the 4n initial occurrence probabilities of studied
motifs of size n at time t¼0. A link gives to the user the possibility of
downloading a template for the xls file. After submission, the vector
Pð0Þ is checked by SEGM: its values must be numerical and positive,
and its sum must be equal to 1. If errors are detected, a description
of these errors is given (Fig. 1). Otherwise, the corresponding
n-nucleotide page is displayed and the result of a first computation
using default options and parameters gives the analytical occurrence
probability PðtÞ of the motif An of size n in the direct evolution
direction and with three formal substitution parameters ak, bk and ck

per motif site. The user can modify these default options and the
parameters to get new results with the same initial vector Pð0Þ. To
study evolution of motifs of different size n or with different initial



Fig. 2. Homepage of the SEGM web server: choice of the size of the studied genetic motifs and upload of the initial occurrence probability vector of genetic motifs.

Fig. 3. Option 1: Choice of the evolutionary time direction. Option 2: Choice of the number of substitution parameters.
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probabilities Pð0Þ of motifs, he must go back to the homepage of
SEGM and upload a new xls file (Fig. 2).
Example 2. The choice of the initial vector Pð0Þ depends on the
evolutionary problem studied. For example, in order to study
‘‘primitive’’ dinucleotides at donor site, precisely their past
occurrence probabilities PðtÞ by inverting the time direction, then
the initial vector Pð0Þ could be the 16 dinucleotides probabilities
at donor site at current time, e.g. probabilities obtained from the
ICE (Information for the Coordinates of Exons) database from
current genes (see Benard and Michel, 2009, Table 2). Another
example, suppose that a DNA sequence is a series of A, e.g. a
poly(A) tail to an RNA molecule. Then, the 256 occurrence
probabilities PðtÞ of tetranucleotides in this sequence subjected
to substitutions can be studied with an initial vector Pð0Þ
associated to this sequence, i.e. precisely P1ð0Þ ¼ 1 for the motif
AAAA and Pið0Þ ¼ 0 for the 255 other motifs ia1.
3.3. Basic options
3.3.1. Time direction

After the submission of the initial occurrence probability
vector Pð0Þ, the first option is the choice of the evolutionary time
direction (Fig. 3). The determination of analytical occurrence
probabilities PðtÞ of motifs can be carried out in direct time
direction (past-present) using Eq. (2.11) or in inverse time
direction (present-past) using Eq. (2.12). By default, solutions
are calculated in direct time direction.

3.3.2. Number of substitution parameters per motif site

Option 2 permits to choose the number of substitution para-
meters per motif site (Fig. 3). The biomathematical model of
SEGM is an extension of the 3-parameter substitution model
(Kimura, 1981) of nucleotides to motifs based on three types of
substitutions for each motif site k: transitions ak (A2G and
C2T), transversions bk (A2T and C2G) and transversions ck
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(A2C and G2T). It is the model by default. SEGM can also study
particular cases extending the 2-parameter nucleotide substitu-
tion model (Kimura, 1980) and the 1-parameter nucleotide
substitution model (Jukes and Cantor, 1969) to motifs. For the
model of two substitution parameters per motif site, the para-
meters are the transitions uk ¼ ak (A2G and C2T) and the
transversions vk=2¼ bk ¼ ck (A2C, A2T, C2G and G2T). For
the model of one substitution parameter per motif site, the
parameters are defined by pk=3¼ ak ¼ bk ¼ ck. The different mod-
els and their associated substitution matrices are explained in a
pdf file accessible in Option 2 (Fig. 3).
3.3.3. Substitution parameters

The substitution parameters can be left formal or set with
numerical values in Option 3 (Fig. 4). Numerical values must be
positive and their sum must be less or equal to 1. After submis-
sion, a description of the encountered errors is displayed if these
conditions are not verified (Fig. 1). By default, the substitution
parameters are left formal to derive formal analytical solutions.
Fig. 4. Option 3: Substitution parameter

Fig. 5. Option 4a: Choice of the studied motifs. Option 4b: Choice of the output for

Fig. 6. Example of analytical occurrence probability P1ðtÞ of the dinucleotide AA at t

occurrence probability vector of genetic motifs.
Remark 5. The motif sites in SEGM are indexed from 0 to n�1, n

being the size of the studied motifs.

3.3.4. Choice of the studied motifs

Option 4a in this version of SEGM offers the possibility to
study evolution up to four large motifs simultaneously. The user
selects one motif per list (Fig. 5).

3.3.5. Output format of the analytical solutions

By default, the analytical occurrence probabilities PðtÞ of
genetic motifs are displayed in a readable text format. In order
to facilitate their integration in external user-programs, Option 4b
allows others formats: C, Fortran and TEX (Fig. 5).

3.4. Results

The analytical occurrence probabilities PðtÞ of genetic
motifs are given with formal substitution parameters (Fig. 6) in
the first computation (Fig. 1) or when the substitution parameters
s which can be formal or numerical.

mat for the analytical occurrence probabilities PðtÞ of genetic motifs at time t.

ime t with three formal substitution parameters per site and a particular initial



Fig. 9. Example of numerical solutions for the three dinucleotides AA, AT and GA

and their sum at time t¼2.5 for particular substitution parameters and a given

initial occurrence probability vector of genetic motifs.
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are left formal (Fig. 4). When all the substitution parameters
are set with numerical values (Option 3, Fig. 4), evolution plots
of the chosen motifs (Option 4a, Fig. 5) are displayed: a compara-
tive evolution plot containing the evolution curves of the
chosen motifs and a plot drawing their sum curve (Fig. 7). In
this case, two additional options regarding evolution time t are
available.

The time interval of plots (Fig. 7) can be modified thanks to
Option 5 (Fig. 8). The times tmin and tmax must be always
positive even if the inverse time direction is chosen. By default,
the time t varies from tmin¼0 to tmax¼5 whatever the time
direction chosen.

A particular value of time t can be set in Option 6 (Fig. 8) to
have the values of the occurrence probabilities PðtÞ of studied
motifs (Fig. 9). As for the evolution plots, a value of the probability
sum of studied motifs is also given.
Fig. 7. Example of evolution curves for the three dinuc

Fig. 8. Option 5: Choice of the time interval for plots. Opt
4. Discussion

We proposed here a generalization of stochastic substitution
models of nucleotides to genetic motifs of any size. This generalized
leotides AA, AT and GA (left) and their sum (right).

ion 6: Choice of a time value for numerical solutions.
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model is based on the identification of a Kronecker relation
between the nucleotide substitution matrices and the motif sub-
stitution matrices. It gives the analytical occurrence probabilities of
genetic motifs as a function of a substitution matrix containing up
to three formal parameters (substitution rates) per motif site and an
initial occurrence probabilities of genetic motifs. This biomathema-
tical model was included in a new version of the SEGM web server
offering now several improved functionalities, in particular a faster
computation, and an extension to genetic motifs of size 4 (tetra-
nucleotides) and 5 (pentanucleotides). The current limit of the
computer implementation of this model is the PC power (CPU and
memory). We are currently investigating a parallel approach based
on GPU (Mathematica 8.1 integrates GPU programming) in order to
allow the evolution analysis of genetic motifs greater than five
nucleotides.
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Appendix A. Substitution matrix for dinucleotides with the
Kronecker method

Construction of the dinucleotide substitution matrix A2 (16,16)
from the Kronecker sum of the two matrices N1 and N2 of size
(4,4) associated to the nucleotide substitution matrices at dinu-
cleotide sites 1 and 2, respectively, using Eq. (2.10):

N1 � N2 ¼

d1 c1 a1 b1

c1 d1 b1 a1

a1 b1 d1 c1

b1 a1 c1 d1

0
BBBB@

1
CCCCA�

d2 c2 a2 b2

c2 d2 b2 a2

a2 b2 d2 c2

b2 a2 c2 d2

0
BBBB@

1
CCCCA,

with d1 ¼�ða1þb1þc1Þ and d2 ¼�ða2þb2þc2Þ. Then,

N1 � N2 ¼

d1 c1 a1 b1

c1 d1 b1 a1

a1 b1 d1 c1

b1 a1 c1 d1

0
BBBB@

1
CCCCA�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

þ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA�

d2 c2 a2 b2

c2 d2 b2 a2

a2 b2 d2 c2

b2 a2 c2 d2

0
BBBB@

1
CCCCA

¼

d1I1 c1I1 a1I1 b1I1

c1I1 d1I1 b1I1 a1I1

a1I1 b1I1 d1I1 c1I1

b1I1 a1I1 c1I1 d1I1

0
BBBB@

1
CCCCAþ

N2 0 0 0

0 N2 0 0

0 0 N2 0

0 0 0 N2

0
BBBB@

1
CCCCA,

where I1 is the identity matrix ð4,4Þ. Then,

N1 � N2 ¼

d1I1þN2 c1I1 a1I1 b1I1

c1I1 d1I1þN2 b1I1 a1I1

a1I1 b1I1 d1I1þN2 c1I1

b1I1 a1I1 c1I1 d1I1þN2

0
BBBB@

1
CCCCA
¼

d c2 a2 b2 c1 0 0 0 a1 0 0 0 b1 0 0 0

c2 d b2 a2 0 c1 0 0 0 a1 0 0 0 b1 0 0

a2 b2 d c2 0 0 c1 0 0 0 a1 0 0 0 b1 0

b2 a2 c2 d 0 0 0 c1 0 0 0 a1 0 0 0 b1

c1 0 0 0 d c2 a2 b2 b1 0 0 0 a1 0 0 0

0 c1 0 0 c2 d b2 a2 0 b1 0 0 0 a1 0 0

0 0 c1 0 a2 b2 d c2 0 0 b1 0 0 0 a1 0

0 0 0 c1 b2 a2 c2 d 0 0 0 b1 0 0 0 a1

a1 0 0 0 b1 0 0 0 d c2 a2 b2 c1 0 0 0

0 a1 0 0 0 b1 0 0 c2 d b2 a2 0 c1 0 0

0 0 a1 0 0 0 b1 0 a2 b2 d c2 0 0 c1 0

0 0 0 a1 0 0 0 b1 b2 a2 c2 d 0 0 0 c1

b1 0 0 0 a1 0 0 0 c1 0 0 0 d c2 a2 b2

0 b1 0 0 0 a1 0 0 0 c1 0 0 c2 d b2 a2

0 0 b1 0 0 0 a1 0 0 0 c1 0 a2 b2 d c2

0 0 0 b1 0 0 0 a1 0 0 0 c1 b2 a2 c2 d

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼ A2,

with d¼�ða1þb1þc1þa2þb2þc2Þ.
Appendix B. Detailed derivation of the analytical occurrence
probability of a motif ii of size n at time t

In order to avoid the computation of the occurrence probabil-
ities of the 4n motifs of size n, we also derived from Eq. (2.11) a
formula that determines the analytical occurrence probability
Pi1 ðtÞ at time t of a motif i1 of size n. Indeed,

Pi1 ðtÞ ¼ PnðtÞ½i1�

¼ #
n

k ¼ 1
ðR � eSkt � R�1Þ � Pnð0Þ

� �
½i1�

¼ #
n

k ¼ 1
R

� �
½i1,� � #

n

k ¼ 1
eSkt

� �
� #

n

k ¼ 1
R�1

� �
� Pnð0Þ: ðB:1Þ

Thus, the computation of the analytical occurrence probability
of the motif i1 does not require the construction of the
whole eigenvectors matrix Q ¼#n

k ¼ 1R but only the i1th row of
Q ½i1,� ¼ ð#n

k ¼ 1RÞ½i1,�.
Moreover, the matrix Q ð4n,4n

Þ is constructed from a Kronecker
product of n matrices R ð4,4Þ. Then, the i1th row of Q can be
determined from a Kronecker product of n rows of R of indexes
corresponding to the indexes dði1,kÞ, 1rdði1,kÞr4, of nucleotides
of each site k, 1rkrn, in the motif i1. For example, the row of Q

corresponding to the occurrence probability of the motif GCT of
size n¼3 and of index i1 ¼ 40 is the result of the Kronecker
product of the following three rows of R of indexes dði1,kÞ: row
dði1,1Þ ¼ 3 corresponding to the nucleotide G for the site k¼1, row
dði1,2Þ ¼ 2 corresponding to the nucleotide C for the site k¼2 and
row dði1,3Þ ¼ 4 corresponding to the nucleotide T for the site k¼3.
Thus, the corresponding row of index i1 ¼ 40 in Q is obtained
by Q ½40,� ¼ R½dði1,1Þ,�#R½dði1,2Þ,�#R½dði1,3Þ,� ¼ R½3,�#R½2,�#R½4,�.
The indexes dði1,kÞ of nucleotides of each site k of a motif i1 of
size n are calculated by the formula

dði1,kÞ ¼
i1�1

4n�k

	 

½4�þ1,

where bði1�1Þ=4n�k
c is the integer part of ði1�1Þ=4n�k and [ ] is the

modulo function. As an illustration with the previous example,
i.e. the motif GCT of size n¼ 3 and index i1 ¼ 40, dði1,1Þ ¼ bð40
�1Þ=43�1

c½4�þ1¼ 3.
Thus, Eq. (B.1) can be rewritten

Pi1 ðtÞ ¼ #
n

k ¼ 1
R½dði1,kÞ,�

� �
� #

n

k ¼ 1
eSkt

� �
� #

n

k ¼ 1
R�1

� �
� Pnð0Þ: ðB:2Þ

Eq. (B.2) can still be simplified. Indeed, the matrix product
ð#n

k ¼ 1R½dði1,kÞ,�Þ � ð#n
k ¼ 1eSktÞ uses a row vector Q ½i1,� and a
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diagonal matrix eSt whose diagonal elements are exponents
of eigenvalues of the substitution rates matrix An ð4

n,4n
Þ. This

matrix eSt can also be obtained by a Kronecker product of n

matrices eSkt . The matrix product Q ½i1,� � eSt can then be replaced
by a scalar product between the row vector Q ½i1,� and a row vector
eLt composed of the diagonal elements of eSt. Let Lk be such a row
vector associated with the site k of a motif of size n and contain-
ing the diagonal elements of Sk, i.e. the eigenvalues of the
nucleotide substitution matrix Nk associated with a motif site k,
i.e. Lk ¼ ½0,�2ðakþbkÞ,�2ðakþckÞ,�2ðbkþckÞ� (see matrix (2.7)).
By using the row vector eLkt , Eq. (B.2) can be rewritten

Pi1 ðtÞ ¼ #
n

k ¼ 1
R½dði1,kÞ,�

� �
� #

n

k ¼ 1
eLkt

� �
� #

n

k ¼ 1
R�1

� �
� Pnð0Þ: ðB:3Þ

As #n
k ¼ 1eLkt is also a row vector, Eq. (B.3) divides by 4n the

number of operations of Eq. (B.2).
Let Ui1 be the row vector associated with the motif i1 and

defined by Ui1 ¼ ð#
n
k ¼ 1R½dði1,kÞ,�Þ � ð#n

k ¼ 1eLktÞ with its ith ele-

ment Ui1 ½i� ¼ ð#
n
k ¼ 1RÞ½i1,i� � elit where eli t is the ith element of

the row vector #n
k ¼ 1eLkt . Let Vi1 be the row vector associated with

the motif i1 and defined by Vi1 ¼Ui1 � ð#
n
k ¼ 1R�1Þ with its ith

element Vi1 ½i� ¼
P4n

j ¼ 1 Ui1 ½j� � ð#
n
k ¼ 1R�1Þ½j,i�. Then,

Vi1 ½i� ¼
X4n

j ¼ 1

#
n

k ¼ 1
R

� �
½i1,j� � elj t � #

n

k ¼ 1
R�1

� �
½j,i�:

From Eq. (B.3),

Pi1 ðtÞ ¼ Vi1 � Pnð0Þ ¼
X4n

i2 ¼ 1

Vi1 ½i2� � Pi2 ð0Þ

¼
X4n

i2 ¼ 1

X4n

i3 ¼ 1

#
n

k ¼ 1
R

� �
½i1,i3� � eli3

t #
n

k ¼ 1
R�1

� �
½i3,i2�

� �
� Pi2 ð0Þ

 !
:

By expressing Pi1 ðtÞ as a sum of 4n exponents of eigenvalues
eli2

t , each one associated with a sum of 4n initial occurrence
probabilities, we obtain

Pi1
ðtÞ ¼

X4n

i2 ¼ 1

eli2
t
�
X4n

i3 ¼ 1

Pi3 ð0Þ � #
n

k ¼ 1
R

� �
½i1,i2� � #

n

k ¼ 1
R�1

� �
½i2,i3�

� �

¼
X4n

i2 ¼ 1

et�
Pn

k ¼ 1
Lk ½dði2 ,kÞ�

�
X4n

i3 ¼ 1

Pi3 ð0Þ �
Yn

k ¼ 1

ðR½dði1,kÞ,dði2,kÞ�Þ

 

�
Yn

k ¼ 1

ðR�1½dði2,kÞ,dði3,kÞ�Þ

!

¼
X4n

i2 ¼ 1

et�
Pn

k ¼ 1
Lk ½dði2 ,kÞ�

�
X4n

i3 ¼ 1

Pi3 ð0Þ �
Yn

k ¼ 1

ðR½dði1,kÞ,dði2,kÞ�

 

�R�1½dði2,kÞ,dði3,kÞ�Þ

!
, ðB:4Þ

with dðix,kÞ ¼ bðix�1Þ=4n�k
c½4�þ1. As R�1 ¼ 1

4 R (Remark 3),
Eq. (B.4) simplifies

Pi1 ðtÞ ¼
1

4n

X4n

i2 ¼ 1

et�
Pn

k ¼ 1
Lk ½dði2 ,kÞ�

�
X4n

i3 ¼ 1

Pi3 ð0Þ �
Yn

k ¼ 1

ðR½dði1,kÞ,dði2,kÞ� � R½dði2,kÞ,dði3,kÞ�Þ

 !
:

Appendix C. Analytical solution of the occurrence probability
of the dinucleotide AG at time t

P3ðtÞ ¼
1

16
½e0ðP1ð0ÞþP2ð0ÞþP3ð0ÞþP4ð0ÞþP5ð0ÞþP6ð0ÞþP7ð0Þ

þP8ð0ÞþP9ð0ÞþP10ð0ÞþP11ð0ÞþP12ð0ÞþP13ð0ÞþP14ð0ÞþP15ð0Þ

þP16ð0ÞÞ

þe�2ða2þb2Þtð�P1ð0Þ�P2ð0ÞþP3ð0ÞþP4ð0Þ�P5ð0Þ�P6ð0ÞþP7ð0Þ

þP8ð0Þ�P9ð0Þ�P10ð0ÞþP11ð0ÞþP12ð0Þ�P13ð0Þ�P14ð0ÞþP15ð0Þ

þP16ð0ÞÞ

þe�2ða2þ c2Þtð�P1ð0ÞþP2ð0ÞþP3ð0Þ�P4ð0Þ�P5ð0ÞþP6ð0ÞþP7ð0Þ

�P8ð0Þ�P9ð0ÞþP10ð0ÞþP11ð0Þ�P12ð0Þ�P13ð0ÞþP14ð0ÞþP15ð0Þ

�P16ð0ÞÞ

þe�2ðb2þ c2ÞtðP1ð0Þ�P2ð0ÞþP3ð0Þ�P4ð0ÞþP5ð0Þ�P6ð0ÞþP7ð0Þ

�P8ð0ÞþP9ð0Þ�P10ð0ÞþP11ð0Þ�P12ð0ÞþP13ð0Þ�P14ð0ÞþP15ð0Þ

�P16ð0ÞÞ

þe�2ða1þb1ÞtðP1ð0ÞþP2ð0ÞþP3ð0ÞþP4ð0ÞþP5ð0ÞþP6ð0ÞþP7ð0Þ

þP8ð0Þ�P9ð0Þ�P10ð0Þ�P11ð0Þ�P12ð0Þ�P13ð0Þ�P14ð0Þ�P15ð0Þ�P16ð0ÞÞ

þe�2ða1þb1þa2 þb2Þtð�P1ð0Þ�P2ð0ÞþP3ð0ÞþP4ð0Þ�P5ð0Þ�P6ð0Þ

þP7ð0ÞþP8ð0ÞþP9ð0ÞþP10ð0Þ�P11ð0Þ�P12ð0ÞþP13ð0ÞþP14ð0Þ

�P15ð0Þ�P16ð0ÞÞ

þe�2ða1þb1þa2 þ c2Þtð�P1ð0ÞþP2ð0ÞþP3ð0Þ�P4ð0Þ�P5ð0ÞþP6ð0Þ

þP7ð0Þ�P8ð0ÞþP9ð0Þ�P10ð0Þ�P11ð0ÞþP12ð0ÞþP13ð0Þ�P14ð0Þ

�P15ð0ÞþP16ð0ÞÞ

þe�2ða1þb1þb2 þ c2ÞtðP1ð0Þ�P2ð0ÞþP3ð0Þ�P4ð0ÞþP5ð0Þ�P6ð0Þ

þP7ð0Þ�P8ð0Þ�P9ð0ÞþP10ð0Þ�P11ð0ÞþP12ð0Þ�P13ð0ÞþP14ð0Þ

�P15ð0ÞþP16ð0ÞÞ

þe�2ða1þ c1ÞtðP1ð0ÞþP2ð0ÞþP3ð0ÞþP4ð0Þ�P5ð0Þ�P6ð0Þ�P7ð0Þ

�P8ð0Þ�P9ð0Þ�P10ð0Þ�P11ð0Þ�P12ð0ÞþP13ð0ÞþP14ð0ÞþP15ð0Þ

þP16ð0ÞÞ

þe�2ða1þ c1þa2þb2Þtð�P1ð0Þ�P2ð0ÞþP3ð0ÞþP4ð0ÞþP5ð0ÞþP6ð0Þ

�P7ð0Þ�P8ð0ÞþP9ð0ÞþP10ð0Þ�P11ð0Þ�P12ð0Þ�P13ð0Þ�P14ð0Þ

þP15ð0ÞþP16ð0ÞÞ

þe�2ða1þ c1þa2þ c2Þtð�P1ð0ÞþP2ð0ÞþP3ð0Þ�P4ð0ÞþP5ð0Þ�P6ð0Þ

�P7ð0ÞþP8ð0ÞþP9ð0Þ�P10ð0Þ�P11ð0ÞþP12ð0Þ�P13ð0ÞþP14ð0Þ

þP15ð0Þ�P16ð0ÞÞ

þe�2ða1þ c1þb2þ c2ÞtðP1ð0Þ�P2ð0ÞþP3ð0Þ�P4ð0Þ�P5ð0ÞþP6ð0Þ�P7ð0Þ

þP8ð0Þ�P9ð0ÞþP10ð0Þ�P11ð0ÞþP12ð0ÞþP13ð0Þ�P14ð0Þ

þP15ð0Þ�P16ð0ÞÞ

þe�2ðb1þ c1ÞtðP1ð0ÞþP2ð0ÞþP3ð0ÞþP4ð0Þ�P5ð0Þ�P6ð0Þ�P7ð0Þ

�P8ð0ÞþP9ð0ÞþP10ð0ÞþP11ð0ÞþP12ð0Þ�P13ð0Þ�P14ð0Þ�P15ð0Þ

�P16ð0ÞÞ

þe�2ðb1þ c1 þa2þb2Þtð�P1ð0Þ�P2ð0ÞþP3ð0ÞþP4ð0ÞþP5ð0ÞþP6ð0Þ

�P7ð0Þ�P8ð0Þ�P9ð0Þ�P10ð0ÞþP11ð0ÞþP12ð0ÞþP13ð0ÞþP14ð0Þ

�P15ð0Þ�P16ð0ÞÞ

þe�2ðb1þ c1 þa2þ c2Þtð�P1ð0ÞþP2ð0ÞþP3ð0Þ�P4ð0ÞþP5ð0Þ�P6ð0Þ

�P7ð0ÞþP8ð0Þ�P9ð0ÞþP10ð0ÞþP11ð0Þ�P12ð0ÞþP13ð0Þ�P14ð0Þ

�P15ð0ÞþP16ð0ÞÞ

þe�2ðb1þ c1 þb2þ c2ÞtðP1ð0Þ�P2ð0ÞþP3ð0Þ�P4ð0Þ�P5ð0ÞþP6ð0Þ�P7ð0Þ

þP8ð0ÞþP9ð0Þ�P10ð0ÞþP11ð0Þ�P12ð0Þ�P13ð0ÞþP14ð0Þ�P15ð0ÞþP16ð0ÞÞ�:
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