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In 1996, a trinucleotide circular code which is maximum, self-complementary, and 𝐶
3, called 𝑋

0
, was identified statistically on a

large gene population of eukaryotes and prokaryotes (Arquès andMichel (1996)). Transition and transversions I and II are classical
molecular evolution processes. A comprehensive computer analysis of these three evolution processes in the code 𝑋

0
shows some

new results; in particular (i) transversion I on the 2nd position of any subset of trinucleotides of𝑋
0
generates trinucleotide circular

codes which are always𝐶3 and (ii) transversion II on the three positions of any subset of trinucleotides of𝑋
0
yields no trinucleotide

circular codes. These new results extend our theory of circular code in genes to its evolution under transition and transversion.

1. Introduction

We continue our study of properties of trinucleotide cir-
cular codes [1–5], trinucleotide comma-free codes [1, 6],
strong trinucleotide circular codes [7], and the common
trinucleotide circular code 𝑋

0
identified in genes [8] (see

also the recent statistical analysis by [9]) which could be a
translation code [10]. A trinucleotide is a word of three letters
(triletter) on the genetic alphabet {𝐴, 𝐶, 𝐺, 𝑇}. The set of 64
trinucleotides is a code (called genetic code), more precisely
a uniform code but not a circular code (see Remark 2). In
the past 50 years, codes, comma-free codes, and circular
codes have been mathematical objects studied in theoretical
biology, mainly to understand the structure and the origin of
the genetic code as well as the reading frame (construction)
of genes, for example, [11–13]. In order to have an intuitive
meaning of these notions, codes are written on a straight
line while comma-free codes and circular codes are written
on a circle, but in both cases, unique decipherability is
required. Circular codes only belong to some subsets of the
64 trinucleotide set while comma-free codes are even more
constrained subsets of circular codes [1].

Before the discovery of the genetic code, Crick et al. [11]
proposed a maximum comma-free code of 20 trinucleotides
for coding the 20 amino acids. This comma-free code turned
out to be invalid (see, e.g., [14]). In 1996, a maximum circular

code 𝑋
0
of 20 trinucleotides was identified statistically on a

large gene population of eukaryotes and also on a large gene
population of prokaryotes [8]

𝑋
0
= {𝐴𝐴𝐶,𝐴𝐴𝑇,𝐴𝐶𝐶,𝐴𝑇𝐶,𝐴𝑇𝑇, 𝐶𝐴𝐺, 𝐶𝑇𝐶,

𝐶𝑇𝐺, 𝐺𝐴𝐴,𝐺𝐴𝐶, 𝐺𝐴𝐺,𝐺𝐴𝑇, 𝐺𝐶𝐶,𝐺𝐺𝐶,

𝐺𝐺𝑇, 𝐺𝑇𝐴,𝐺𝑇𝐶, 𝐺𝑇𝑇, 𝑇𝐴𝐶, 𝑇𝑇𝐶} .

(1)

This code 𝑋
0
has remarkable mathematical properties as it

is a 𝐶
3 self-complementary maximum circular code (see the

following). Since 1996, its properties have been studied in
detail by different authors, for example, [9, 15–21]. Transition
and transversions I and II are classical molecular evolution
processes, for example, [22]. By using an algorithm based on
the necklace, we perform here a comprehensive computer
analysis of these three evolution processes in the code 𝑋

0
.

Some new results are identifiedwith the code𝑋
0
by computer

analysis; in particular (i) transversion I on the 2nd position
of any subset of trinucleotides of 𝑋

0
generates trinucleotide

circular codes which are always 𝐶3 and (ii) transversion II on
the three positions of any subset of trinucleotides of𝑋

0
yields

no trinucleotide circular codes.
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2. Preliminaries

The classical notions of language theory and codes can be
found in [23, 24]. Let A

4
= {𝐴, 𝐶, 𝐺, 𝑇} denote the genetic

alphabet, lexicographically ordered by 𝐴 < 𝐶 < 𝐺 < 𝑇. The
set of words (nonempty words, resp.) onA

4
is denoted byA∗

4

(A+
4
, resp.).The set of the 16words of length 2 (dinucleotides

or diletters) onA
4
is denoted byA2

4
= {𝐴𝐴,𝐴𝐶, . . . , 𝑇𝑇}.The

set of the 64words of length 3 (trinucleotides or triletters) on
A
4
is denoted byA3

4
= {𝐴𝐴𝐴,𝐴𝐴𝐶, . . . , 𝑇𝑇𝑇}.

Definition 1. A subset 𝑋 ⊂ A+
4
is a code on A

4
if for each

𝑥
1
, . . . , 𝑥

𝑛
, 𝑥
󸀠

1
, . . . , 𝑥

󸀠

𝑚
∈ 𝑋, 𝑛,𝑚 ≥ 1, the condition 𝑥

1
⋅ ⋅ ⋅ 𝑥
𝑛
=

𝑥
󸀠

1
⋅ ⋅ ⋅ 𝑥
󸀠

𝑚
implies 𝑛 = 𝑚 and 𝑥

𝑖
= 𝑥
󸀠

𝑖
for 𝑖 = 1, . . . , 𝑛.

Remark 2. A3
4
is a code.

Any nonempty subset of A3
4
is a code called here trinu-

cleotide code.

Definition 3. A trinucleotide code 𝑋 ⊂ A3
4
is circular if, for

each 𝑥
1
, . . . , 𝑥

𝑛
, 𝑥
󸀠

1
, . . . , 𝑥

󸀠

𝑚
∈ 𝑋, 𝑛,𝑚 ≥ 1, 𝑝 ∈ A∗

4
, 𝑠 ∈ A+

4
,

the conditions 𝑠𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
𝑝 = 𝑥

󸀠

1
⋅ ⋅ ⋅ 𝑥
󸀠

𝑚
and 𝑥

1
= 𝑝𝑠 imply 𝑛 =

𝑚, 𝑝 = 𝜀 (empty word) and 𝑥
𝑖
= 𝑥
󸀠

𝑖
for 𝑖 = 1, . . . , 𝑛.

Notation 1. A trinucleotide circular code is noted 𝐶.

Remark 4. A3
4
is not a trinucleotide circular code.

Let 𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛−1

, 𝑙
𝑛
be letters in A

4
, 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛−1
, 𝑑
𝑛

diletters inA2
4
, and 𝑛 an integer satisfying 𝑛 ≥ 2.

Definition 5. We say that the ordered sequence 𝑙
1
, 𝑑
1
, 𝑙
2
,

𝑑
2
, . . . , 𝑑

𝑛−1
, 𝑙
𝑛
, 𝑑
𝑛
, 𝑙
𝑛+1

is an (𝑛 + 1)LDCN (Letter Diletter
Continued Necklace) for a subset 𝑋 ⊂ A3

4
if

𝑙
1
𝑑
1
, 𝑙
2
𝑑
2
, . . . , 𝑙
𝑛
𝑑
𝑛
∈ 𝑋,

𝑑
1
𝑙
2
, 𝑑
2
𝑙
3
, . . . , 𝑑

𝑛−1
𝑙
𝑛
, 𝑑
𝑛
𝑙
𝑛+1

∈ 𝑋.

(2)

Only a few trinucleotide codes are circular. Two propo-
sitions based on the necklace concept allow to determine if
a trinucleotide code is circular or not [2, 18].

Proposition 6 (see [18]). Let 𝑋 be a trinucleotide code. The
following conditions are equivalent:

(i) 𝑋 is a trinucleotide circular code;
(ii) 𝑋 has no 5 LDCN .

Definition 7. We say that the ordered sequence 𝑙
1
, 𝑑
1
, 𝑙
2
,

𝑑
2
, . . . , 𝑑

𝑛−1
, 𝑙
𝑛
, 𝑑
𝑛
, 𝑙
𝑛+1

is an (𝑛 + 1)LDCCN (Letter Diletter
Continued Closed Necklace) for a subset 𝑋 ⊂ A3

4
if

𝑙
1
𝑑
1
, 𝑙
2
𝑑
2
, . . . , 𝑙
𝑛
𝑑
𝑛
∈ 𝑋,

𝑑
1
𝑙
2
, 𝑑
2
𝑙
3
, . . . , 𝑑

𝑛−1
l
𝑛
, 𝑑
𝑛
𝑙
1
∈ 𝑋.

(3)

Proposition 8 (see [2]). Let 𝑋 be a trinucleotide code. The
following conditions are equivalent:

(i) 𝑋 is a trinucleotide circular code;

(ii) 𝑋 has no 𝑛LDCCN for any integer 𝑛 ∈ {2, 3, 4, 5}.

Definition 9. A trinucleotide circular code 𝑋 ⊂ A3
4
is

maximal if, for each 𝑥 ∈ A3
4
, 𝑥 ∉ 𝑋, 𝑋 ∪ {𝑥} is not a

trinucleotide circular code.

Definition 10. A trinucleotide circular code containing
exactly 𝑘 elements is called a 𝑘-trinucleotide circular code.

Definition 11. A 20-trinucleotide circular code is maximum
as no trinucleotide circular code can contain more than 20

words.

Notation 2. A maximum trinucleotide circular code is noted
MC.

Remark 12. A 20-trinucleotide circular code is both maximal
and maximum.

We recall two classical genetic maps: complementary and
circular permutation.

Definition 13. The complementary genetic map C: A+
4

→

A+
4
is defined by

C (𝐴) = 𝑇, C (𝐶) = 𝐺,

C (𝐺) = 𝐶, C (𝑇) = 𝐴

(4)

and for all 𝑢, V ∈ A+
4
by

C (𝑢V) = C (V)C (𝑢) . (5)

Example 14. C(𝐴𝐶𝐺) = 𝐶𝐺𝑇. This map C is associated
with the property of the complementary and antiparallel
double helix (one DNA strand chemically oriented in a 5

󸀠-3󸀠
direction and the other DNA strand in the opposite 3

󸀠-5󸀠
direction).

Definition 15. The complementary map C on a trinucleotide
𝑥 is naturally extended to a trinucleotide code𝑋 as follows:

C (𝑋) = {𝑦 | 𝑥, 𝑦 ∈ A
3

4
, 𝑥 ∈ 𝑋, 𝑦 = C (𝑥)} . (6)

Definition 16. The circular permutation genetic map P:A3
4

→ A3
4
permutes circularly a trinucleotide 𝑙

1
𝑙
2
𝑙
3
, 𝑙
1
, 𝑙
2
, 𝑙
3
∈ A
4
,

as follows:

P (𝑙
1
𝑙
2
𝑙
3
) = 𝑙
2
𝑙
3
𝑙
1
. (7)

Example 17. P(𝐴𝐶𝐺) = 𝐶𝐺𝐴.

Definition 18. The circular permutation map P on a trinu-
cleotide 𝑥 is naturally extended to a trinucleotide code 𝑋 as
follows:

P (𝑋) = {𝑦 | 𝑥, 𝑦 ∈ A
3

4
, 𝑥 ∈ 𝑋, 𝑦 = P (𝑥)} . (8)
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Notation 3. The 𝑘th iterate ofP is denoted byP𝑘.

Remark 19. The trinucleotide codesP(𝑋) andP2(𝑋) are the
conjugated classes of the trinucleotide code 𝑋.

Definition 20. A trinucleotide circular code 𝑋 is self-
complementary if, for each 𝑥 ∈ 𝑋,C(𝑥) ∈ 𝑋.

Notation 4. A self-complementary trinucleotide circular
code is noted SC.

Remark 21. A 𝑘-trinucleotide circular code for 𝑘 odd cannot
be self-complementary.

Definition 22. A trinucleotide circular code 𝑋 is 𝐶
3 if 𝑋,

P(𝑋), andP2(𝑋) are trinucleotide circular codes.

Notation 5. A 𝐶
3 trinucleotide circular code 𝑋 is noted 𝐶

3.

Definition 23. A trinucleotide circular code 𝑋 is 𝐶
3 self-

complementary maximum if 𝑋 is maximum, 𝑋 = C(𝑋)

(self-complementary), and P(𝑋) and P2(𝑋) are trinu-
cleotide circular codes satisfyingC(P(𝑋)) = P2(𝑋).

Notation 6. A 𝐶
3 self-complementary maximum circular

code is noted MSC3.

The set 𝑋
0
of 20 trinucleotides identified in the gene

populations of both eukaryotes and prokaryotes is a 𝐶
3 self-

complementarymaximumcircular codeMSC3 [8]; that is,𝑋
0

is maximum, 𝑋
0
= C(𝑋

0
), P(𝑋

0
) = 𝑋

1
, and P2(𝑋

0
) = 𝑋

2

are trinucleotide circular codes, andC(𝑋
1
) = 𝑋

2
.

We recall three classical evolution genetic maps: transi-
tion and transversions I and II, for example, [22] and extend
their definitions to the positions of a trinucleotide.

Definition 24. The transition evolution genetic map T:
A+
4

→ A+
4
is defined by

T (𝐴) = 𝐺, T (𝐶) = 𝑇,

T (𝐺) = 𝐴, T (𝑇) = 𝐶.

(9)

Definition 25. The transition map T on a letter 𝑙 can be
applied in different positions of a trinucleotide 𝑥 = 𝑙

1
𝑙
2
𝑙
3
:

T𝑖, 𝑖 ∈ {1, 2, 3}, is the transition on the position 𝑖 of 𝑥, T𝑖,𝑗,
𝑖, 𝑗 ∈ {1, 2, 3} with 𝑖 < 𝑗, is the transition on the two positions
𝑖 and 𝑗 of 𝑥, andT1,2,3 is the transition on the three positions
of 𝑥.

Example 26. T1(𝐴𝐶𝐺) = 𝐺𝐶𝐺, T2(𝐴𝐶𝐺) = 𝐴𝑇𝐺, T3
(𝐴𝐶𝐺) = 𝐴𝐶𝐴, T1,2(𝐴𝐶𝐺) = 𝐺𝑇𝐺, T1,3(𝐴𝐶𝐺) = 𝐺𝐶𝐴,
T2,3(𝐴𝐶𝐺) = 𝐴𝑇𝐴, andT1,2,3(𝐴𝐶𝐺) = 𝐺𝑇𝐴.

Definition 27. The transition maps T𝑖, T𝑖,𝑗, T1,2,3 on a
trinucleotide 𝑥 are also extended to a trinucleotide code 𝑋,
in a similar way to the genetic mapsC andP.

Definition 28. The transversion I evolution genetic map VI:
A+
4

→ A+
4
is defined by

VI (𝐴) = 𝑇, VI (𝐶) = 𝐺,

VI (𝐺) = 𝐶, VI (𝑇) = 𝐴.

(10)

Definition 29. The transversion ImapVI on a letter 𝑙 can also
be applied in different positions of a trinucleotide 𝑥 = 𝑙

1
𝑙
2
𝑙
3
:

V𝑖I, 𝑖 ∈ {1, 2, 3}, is the transversion I on the position 𝑖 of 𝑥,
V
𝑖,𝑗

I , 𝑖, 𝑗 ∈ {1, 2, 3} with 𝑖 < 𝑗, is the transversion I on the two
positions 𝑖 and 𝑗 of 𝑥, and V1,2,3I is the transversion I on the
three positions of 𝑥.

Example 30. V1I (𝐴𝐶𝐺) = 𝑇𝐶𝐺, V2I (𝐴𝐶𝐺) = 𝐴𝐺𝐺, V3I
(𝐴𝐶𝐺) = 𝐴𝐶𝐶, V1,2I (𝐴𝐶𝐺) = 𝑇𝐺𝐺, V1,3I (𝐴𝐶𝐺) = 𝑇𝐶𝐶,
V2,3I (𝐴𝐶𝐺) = 𝐴𝐺𝐶, andV1,2,3I (𝐴𝐶𝐺) = 𝑇𝐺𝐶.

Definition 31. The transversion I maps V𝑖I, V
𝑖,𝑗

I , V1,2,3I on a
trinucleotide 𝑥 are also extended to a trinucleotide code𝑋, in
a similar way to the genetic mapsC andP.

Definition 32. The transversion II evolution genetic mapVII:
A+
4

→ A+
4
is defined by

VII (𝐴) = 𝐶, VII (𝐶) = 𝐴,

VII (𝐺) = 𝑇, VII (𝑇) = 𝐺.

(11)

Definition 33. The transversion II map VII on a letter 𝑙 can
also be applied in different positions of a trinucleotide 𝑥 =

𝑙
1
𝑙
2
𝑙
3
: V𝑖II, 𝑖 ∈ {1, 2, 3}, is the transversion II on the position

𝑖 of 𝑥,V𝑖,𝑗II , 𝑖, 𝑗 ∈ {1, 2, 3} with 𝑖 < 𝑗, is the transversion II on
the two positions 𝑖 and 𝑗 of 𝑥, and V1,2,3II is the transversion
II on the three positions of 𝑥.

Example 34. V1II(𝐴𝐶𝐺) = 𝐶𝐶𝐺, V2II(𝐴𝐶𝐺) = 𝐴𝐴𝐺, V3II
(𝐴𝐶𝐺) = 𝐴𝐶𝑇, V1,2II (𝐴𝐶𝐺) = 𝐶𝐴𝐺, V1,3II (𝐴𝐶𝐺) = 𝐶𝐶𝑇,
V2,3II (𝐴𝐶𝐺) = 𝐴𝐴𝑇, andV1,2,3II (𝐴𝐶𝐺) = 𝐶𝐴𝑇.

Definition 35. The transversion II maps V𝑖II, V
𝑖,𝑗

II , V
1,2,3

II on
a trinucleotide 𝑥 are also extended to a trinucleotide code𝑋,
in a similar way to the genetic mapsC andP.

Definition 36. The evolution genetic maps in 𝑙 trinucleotides
of a trinucleotide circular code are defined by T(𝑙) for tran-
sition,VI(𝑙) for transversion I, andVII(𝑙) for transversion II.

3. Results

An evolution genetic map, that is,T(𝑙),VI(𝑙), andVII(𝑙), in 𝑙

trinucleotides of the common trinucleotide circular code 𝑋
0

leads to 𝑆(𝑙) = (
20

𝑙
) trinucleotide codes which are potentially

circular. Table 1 gives these numbers 𝑆(𝑙).
Based on Proposition 6 allowing to test if a trinucleotide

code is circular or not (algorithm not detailed, see, e.g.,
[2]), computer analyses of a great number of trinucleotide
codes allow to identify here new properties with the common
trinucleotide circular code 𝑋

0
observed in genes under

evolution by transition and transversion.
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Table 1: Number 𝑆(𝑙) = (
20

𝑙
) of trinucleotide codes after an

evolution genetic map (transition T(𝑙), transversion I VI(𝑙), and
transversion II VII(𝑙)) in 𝑙 trinucleotides of the common trinu-
cleotide circular code 𝑋

0
.

𝑙 𝑆(𝑙)

{1, 19} 20

{2, 18} 190

{3, 17} 1140

{4, 16} 4845

{5, 15} 15504

{6, 14} 38760

{7, 13} 77520

{8, 12} 125970

{9, 11} 167960

10 184756

20 1

3.1. Transition Map

3.1.1. Transition MapT𝑖

Result 1 (Table 2). For 𝑙 = 1, . . . , 20

𝑐 (T
1
(𝑙)) = 𝑐 (T

3
(𝑙)) ,

mc (T1 (𝑙)) = mc (T3 (𝑙)) ,

sc (T1 (𝑙)) = sc (T3 (𝑙)) ,

𝑐
3
(T
1
(𝑙)) = 𝑐

3
(T
3
(𝑙)) ,

msc3 (T1 (𝑙)) = msc3 (T3 (𝑙)) .

(12)

As expected, the lists of trinucleotide circular codes 𝐶

associated with 𝑐(T1(𝑙)) and 𝑐(T3(𝑙)) are different for 𝑙 =

1, . . . , 13 (not shown). No trinucleotide code is circular after
a certain number of transitions T𝑖 in the trinucleotides of
the common trinucleotide circular code 𝑋

0
. Precisely, for

𝑙 = 14, . . . , 20

𝑐 (T
1
(𝑙)) = 𝑐 (T

3
(𝑙)) = 0 (13)

and for 𝑙 = 10, . . . , 20

𝑐 (T
2
(𝑙)) = 0. (14)

The transition T𝑖 generates a maximum number of trinu-
cleotide circular codes 𝐶 for

max {𝑐 (T
𝑖
(𝑙)) , 𝑖 = 1, 2, 3, 𝑙 = 1, . . . , 20}

= 𝑐 (T
1
(7)) = 𝑐 (T

3
(7)) = 1436

(15)

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for

max {msc3 (T𝑖 (𝑙)) , 𝑖 = 1, 2, 3, 𝑙 = 1, . . . , 20}

= msc3 (T1 (6)) = msc3 (T3 (6)) = 20.

(16)

Table 2: Transition map T𝑖(𝑙) in 𝑙 trinucleotides of the common
trinucleotide circular code 𝑋

0
. Number 𝑐(T𝑖(𝑙)) of circular codes

𝐶, number mc(T𝑖(𝑙)) of maximum circular codes MC, num-
ber sc(T𝑖(𝑙)) of self-complementary circular codes SC, number
𝑐
3
(T𝑖(𝑙)) of circular codes 𝐶

3, and number msc3(T𝑖(𝑙)) of 𝐶3 self-
complementary maximum circular codes MSC3.

𝑙
T1(𝑙) orT3(𝑙) T2(𝑙)

𝑐 mc sc 𝑐
3 msc3 𝑐 mc sc 𝑐

3 msc3

1 12 0 0 12 0 8 0 0 8 0

2 68 6 10 68 6 28 4 8 28 4

3 240 0 0 240 0 60 0 0 56 0

4 587 15 33 586 15 92 6 18 74 6

5 1049 0 0 1040 0 108 0 0 62 0

6 1408 20 48 1372 20 96 4 8 32 4

7 1436 0 0 1352 0 60 0 0 8 0

8 1111 15 33 985 15 23 1 1 1 1

9 642 0 0 516 0 4 0 0 0 0

10 268 6 10 184 6 0 0 0 0 0

11 76 0 0 40 0 0 0 0 0 0

12 13 1 1 4 1 0 0 0 0 0

13 1 0 0 0 0 0 0 0 0 0

{14, . . . , 20} 0 0 0 0 0 0 0 0 0 0

3.1.2. Transition MapT𝑖,𝑗

Result 2 (Table 3). For 𝑙 = 1, . . . , 20

𝑐 (T
1,2

(𝑙)) = 𝑐 (T
2,3

(𝑙)) ,

mc (T1,2 (𝑙)) = mc (T2,3 (𝑙)) ,

sc (T1,2 (𝑙)) = sc (T2,3 (𝑙)) ,

𝑐
3
(T
1,2

(𝑙)) = 𝑐
3
(T
2,3

(𝑙)) ,

msc3 (T1,2 (𝑙)) = msc3 (T2,3 (𝑙)) .

(17)

The lists of trinucleotide circular codes 𝐶 associated with
𝑐(T1,2(𝑙)) and 𝑐(T2,3(𝑙)) are different for 𝑙 = 1, . . . , 14 (not
shown). No trinucleotide code is circular after a certain num-
ber of transitions T𝑖,𝑗 in the trinucleotides of the common
trinucleotide circular code 𝑋

0
. Precisely, for 𝑙 = 15, . . . , 20

𝑐 (T
1,2

(𝑙)) = 𝑐 (T
2,3

(𝑙)) = 0 (18)

and for 𝑙 = 12, . . . , 20

𝑐 (T
1,3

(𝑙)) = 0. (19)

The transition T𝑖,𝑗 generates a maximum number of trinu-
cleotide circular codes 𝐶 for

max {𝑐 (T
𝑖,𝑗

(𝑙)) , 𝑖, 𝑗 = 1, 2, 3, 𝑖 < 𝑗, 𝑙 = 1, . . . , 20}

= 𝑐 (T
1,3

(6)) = 598

(20)
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Table 3: Transition map T𝑖,𝑗(𝑙) in 𝑙 trinucleotides of the common trinucleotide circular code 𝑋
0
. Number 𝑐(T𝑖,𝑗(𝑙)) of circular codes 𝐶,

number mc(T𝑖,𝑗(𝑙)) of maximum circular codes MC, number sc(T𝑖,𝑗(𝑙)) of self-complementary circular codes SC, number 𝑐
3
(T𝑖,𝑗(𝑙)) of

circular codes 𝐶3, and number msc3(T𝑖,𝑗(𝑙)) of 𝐶3 self-complementary maximum circular codes MSC3.

𝑙
T1,2(𝑙) orT2,3(𝑙) T1,3(𝑙)

𝑐 mc sc 𝑐
3 msc3 𝑐 mc sc 𝑐

3 msc3

1 9 1 0 9 0 10 2 0 10 0

2 37 4 6 36 4 49 5 9 45 5

3 91 4 0 85 0 152 8 0 122 0

4 148 6 11 130 6 325 10 27 223 10

5 166 6 0 133 0 508 12 0 292 0

6 129 4 6 90 4 598 10 30 286 10

7 67 4 0 38 0 532 8 0 214 0

8 21 1 1 9 1 353 5 11 121 5

9 4 1 0 1 0 162 2 0 44 0

10 3 0 0 0 0 42 1 2 10 1

11 4 0 0 0 0 4 0 0 0 0

12 3 0 0 0 0 0 0 0 0 0

13 4 0 0 0 0 0 0 0 0 0

14 1 0 0 1 0 0 0 0 0 0

{15, . . . , 20} 0 0 0 0 0 0 0 0 0 0

Table 4: Transition mapT1,2,3(𝑙) in 𝑙 trinucleotides of the common
trinucleotide circular code𝑋

0
. Number 𝑐(T1,2,3(𝑙)) of circular codes

𝐶, number mc(T1,2,3(𝑙)) of maximum circular codes MC, number
sc(T1,2,3(𝑙)) of self-complementary circular codes SC, number
𝑐
3
(T1,2,3(𝑙)) of circular codes 𝐶3, and number msc3(T1,2,3(𝑙)) of 𝐶3

self-complementary maximum circular codes MSC3.

𝑙
T1,2,3(𝑙)

𝑐 mc sc 𝑐
3 msc3

{1, 19} 8 0 0 8 0

{2, 18} 28 4 8 28 4

{3, 17} 56 0 0 56 0

{4, 16} 71 7 19 70 6

{5, 15} 64 0 0 56 0

{6, 14} 56 8 16 28 4

{7, 13} 64 0 0 8 0

{8, 12} 72 8 20 1 1

{9, 11} 64 0 0 0 0

10 56 8 16 0 0

20 1 1 1 1 1

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for

max {msc3 (T𝑖,𝑗 (𝑙)) , 𝑖, 𝑗 = 1, 2, 3, 𝑖 < 𝑗, 𝑙 = 1, . . . , 20}

= msc3 (T1,3 (4)) = msc3 (T1,3 (6)) = 10.

(21)

The numbers 𝑐
3
(T1,2(𝑙)) = 𝑐

3
(T2,3(𝑙)) of circular codes 𝐶

3

have a particular growth function

𝑐
3
(T
1,2

(14)) = 𝑐
3
(T
2,3

(14)) = 1,

𝑐
3
(T
1,2

(𝑙)) = 𝑐
3
(T
2,3

(𝑙)) = 0 for 𝑙 = 10, . . . , 13.

(22)

3.1.3. Transition MapT1,2,3

Result 3 (Table 4). The transition T1,2,3 always generates
trinucleotide circular codes. Indeed, for 𝑙 = 1, . . . , 20

𝑐 (T
1,2,3

(𝑙)) > 0. (23)

The lists of trinucleotide circular codes 𝐶 associated with
𝑐(T1,2,3(𝑙)) and 𝑐(T1,2,3(20 − 𝑙)) are different for 𝑙 = 1, . . . , 9

(not shown). The transition T1,2,3 generates a maximum
number of trinucleotide circular codes 𝐶 for

max {𝑐 (T
1,2,3

(𝑙)) , 𝑙 = 1, . . . , 20}

= 𝑐 (T
1,2,3

(8)) = 𝑐 (T
1,2,3

(12)) = 72

(24)

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for
max {msc3 (T1,2,3 (𝑙)) , 𝑙 = 1, . . . , 20}

= msc3 (T1,2,3 (4)) = msc3 (T1,2,3 (16)) = 6.

(25)

3.2. Transversion I Map

3.2.1. Transversion I MapV𝑖
𝐼

Result 4 (Table 5). For 𝑙 = 1, . . . , 20

𝑐 (V
1

I (𝑙)) = 𝑐 (V
3

I (𝑙)) ,

mc (V1I (𝑙)) = mc (V3I (𝑙)) ,

sc (V1I (𝑙)) = sc (V3I (𝑙)) ,
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𝑐
3
(V
1

I (𝑙)) = 𝑐
3
(V
3

I (𝑙)) ,

msc3 (V1I (𝑙)) = msc3 (V3I (𝑙)) .

(26)

The lists of trinucleotide circular codes 𝐶 associated with
𝑐(V1I (𝑙)) and 𝑐(V3I (𝑙)) are different for 𝑙 = 1, . . . , 9 (not
shown). No trinucleotide code is circular after a certain
number of transversions I V𝑖I in the trinucleotides of the
common trinucleotide circular code 𝑋

0
. Precisely, for 𝑙 =

10, . . . , 20

𝑐 (V
1

I (𝑙)) = 𝑐 (V
3

I (𝑙)) = 0 (27)

and for 𝑙 = 18, 19, 20

𝑐 (V
2

I (𝑙)) = 0. (28)

The transversion I V𝑖I generates a maximum number of
trinucleotide circular codes 𝐶 for

max {𝑐 (V
𝑖

I (𝑙)) , 𝑖 = 1, 2, 3, 𝑙 = 1, . . . , 20}

= 𝑐 (V
2

I (9)) = 24310

(29)

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for

max {msc3 (V𝑖I (𝑙)) , 𝑖 = 1, 2, 3, 𝑙 = 1, . . . , 20}

= msc3 (V2I (8)) = 70.

(30)

A remarkable code property only found with transversion I
V2I is, for 𝑙 = 1, . . . , 20,

𝑐 (V
2

I (𝑙)) = 𝑐
3
(V
2

I (𝑙)) , (31)

and furthermore, after a detailed computer analysis, the lists
of trinucleotide circular codes 𝐶 and 𝐶

3 associated with
𝑐(V2I (𝑙)) and 𝑐

3
(V2I (𝑙)), respectively, are identical for 𝑙 =

1, . . . , 17.

3.2.2. Transversion I MapV𝑖,𝑗
𝐼

Result 5 (Table 6). For 𝑙 = 1, . . . , 20

𝑐 (V
1,2

I (𝑙)) = 𝑐 (V
2,3

I (𝑙)) ,

mc (V1,2I (𝑙)) = mc (V2,3I (𝑙)) ,

sc (V1,2I (𝑙)) = sc (V2,3I (𝑙)) ,

𝑐
3
(V
1,2

I (𝑙)) = 𝑐
3
(V
2,3

I (𝑙)) ,

msc3 (V1,2I (𝑙)) = msc3 (V2,3I (𝑙)) .

(32)

The lists of trinucleotide circular codes 𝐶 associated with
𝑐(V1,2I (𝑙)) and 𝑐(V2,3I (𝑙)) are different for 𝑙 = 1, . . . , 12 (not
shown). No trinucleotide code is circular after a certain

number of transversions I V𝑖,𝑗I in the trinucleotides of the
common trinucleotide circular code 𝑋

0
. Precisely, for 𝑙 =

13, . . . , 20

𝑐 (V
1,2

I (𝑙)) = 𝑐 (V
2,3

I (𝑙)) = 0 (33)

and for 𝑙 = 19, 20

𝑐 (V
1,3

I (𝑙)) = 0. (34)

The transversion I V
𝑖,𝑗

I generates a maximum number of
trinucleotide circular codes 𝐶 for

max {𝑐 (V
𝑖,𝑗

I (𝑙)) , 𝑖, 𝑗 = 1, 2, 3, 𝑖 < 𝑗, 𝑙 = 1, . . . , 20}

= 𝑐 (V
1,2

I (6)) = 𝑐 (V
2,3

I (6)) = 630

(35)

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for

max {msc3 (V𝑖,𝑗I (𝑙)) , 𝑖, 𝑗 = 1, 2, 3, 𝑖 < 𝑗, 𝑙 = 1, . . . , 20}

= msc3 (V1,2I (4)) = msc3 (V2,3I (4)) = 6.

(36)

The numbers sc(V1,3I (𝑙)) of self-complementary circular
codes SC have a particular growth function

sc (V1,3I (𝑙)) = 1 for 𝑙 = 12, 14, 16, 18,

sc (V1,3I (𝑙)) = 0 for 𝑙 = 8, 10.

(37)

Thenumbers 𝑐3(V1,3I (𝑙)) of circular codes𝐶3 have a particular
growth function

𝑐
3
(V
1,3

I (𝑙)) = 1 for 𝑙 = 16, 18,

𝑐
3
(V
1,3

I (17)) = 2,

𝑐
3
(V
1,3

I (𝑙)) = 0 for 𝑙 = 7, . . . , 15.

(38)

3.2.3. Transversion I MapV1,2,3
𝐼

Result 6 (Table 7). The transversion IV1,2,3I always generates
trinucleotide circular codes. Indeed, for 𝑙 = 1, . . . , 20

𝑐 (V
1,2,3

I (𝑙)) > 0. (39)

The lists of trinucleotide circular codes 𝐶 associated with
𝑐(V1,2,3I (𝑙)) and 𝑐(V1,2,3I (20 − 𝑙)) are different for 𝑙 = 1, . . . , 9

(not shown). The transversion IV1,2,3I generates a maximum
number of trinucleotide circular codes 𝐶 for

max {𝑐 (V
1,2,3

I (𝑙)) , 𝑙 = 1, . . . , 20} = 𝑐 (V
1,2,3

I (10)) = 66

(40)

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for

max {msc3 (V1,2,3I (𝑙)) , 𝑙 = 1, . . . , 20}

= msc3 (V1,2,3I (4)) = msc3 (V1,2,3I (16)) = 9.

(41)
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Table 5: Transversion I map V𝑖I(𝑙) in 𝑙 trinucleotides of the common trinucleotide circular code 𝑋
0
. Number 𝑐(V𝑖I(𝑙)) of circular codes 𝐶,

numbermc(V𝑖I(𝑙)) of maximum circular codesMC, number sc(V𝑖I(𝑙)) of self-complementary circular codes SC, number 𝑐3(V𝑖I(𝑙)) of circular
codes 𝐶3, and number msc3(V𝑖I(𝑙)) of 𝐶

3 self-complementary maximum circular codes MSC3.

𝑙
V1I (𝑙) orV

3

I (𝑙) V2I (𝑙)

𝑐 mc sc 𝑐
3 msc3 𝑐 mc sc 𝑐

3 msc3

1 8 0 0 8 0 16 0 0 16 0

2 31 4 5 30 4 122 8 12 122 8

3 76 0 0 71 0 590 0 0 590 0

4 130 6 8 114 6 2030 28 56 2030 28

5 160 0 0 125 0 5278 0 0 5278 0

6 142 4 5 92 4 10738 56 132 10738 56

7 87 0 0 42 0 17446 0 0 17446 0

8 32 1 1 10 1 22880 70 174 22880 70

9 5 0 0 1 0 24310 0 0 24310 0

10 0 0 0 0 0 20878 56 132 20878 56

11 0 0 0 0 0 14378 0 0 14378 0

12 0 0 0 0 0 7826 28 56 7826 28

13 0 0 0 0 0 3290 0 0 3290 0

14 0 0 0 0 0 1030 8 12 1030 8

15 0 0 0 0 0 226 0 0 226 0

16 0 0 0 0 0 31 1 1 31 1

17 0 0 0 0 0 2 0 0 2 0

{18, . . . , 20} 0 0 0 0 0 0 0 0 0 0

Table 6: Transversion I map V
𝑖,𝑗

I (𝑙) in 𝑙 trinucleotides of the common trinucleotide circular code 𝑋
0
. Number 𝑐(V

𝑖,𝑗

I (𝑙)) of circular codes
𝐶, number mc(V𝑖,𝑗I (𝑙)) of maximum circular codes MC, number sc(V𝑖,𝑗I (𝑙)) of self-complementary circular codes SC, number 𝑐3(V𝑖,𝑗I (𝑙)) of
circular codes 𝐶3, and number msc3(V𝑖,𝑗I (𝑙)) of 𝐶3 self-complementary maximum circular codes MSC3.

𝑙
V1,2I (𝑙) orV2,3I (𝑙) V1,3I (𝑙)

𝑐 mc sc 𝑐
3 msc3 𝑐 mc sc 𝑐

3 msc3

1 10 2 0 9 0 6 2 0 4 0

2 48 5 5 38 4 15 3 5 7 3

3 147 8 0 102 0 20 4 0 8 0

4 319 10 8 191 6 15 3 5 7 3

5 514 12 0 265 0 8 4 0 4 0

6 630 10 5 282 4 11 3 1 1 1

7 595 8 0 240 0 22 4 0 0 0

8 435 5 1 162 1 32 4 0 0 0

9 245 2 0 88 0 38 2 0 0 0

10 103 1 0 34 0 38 2 0 0 0

11 29 0 0 8 0 34 0 0 0 0

12 4 0 0 1 0 39 0 1 0 0

13 0 0 0 0 0 56 0 0 0 0

14 0 0 0 0 0 65 0 1 0 0

15 0 0 0 0 0 52 0 0 0 0

16 0 0 0 0 0 27 0 1 1 0

17 0 0 0 0 0 8 0 0 2 0

18 0 0 0 0 0 1 0 1 1 0

{19, 20} 0 0 0 0 0 0 0 0 0 0
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Table 7: Transversion I map V1,2,3I (𝑙) in 𝑙 trinucleotides of the
common trinucleotide circular code 𝑋

0
. Number 𝑐(V1,2,3I (𝑙)) of

circular codes 𝐶, number mc(V1,2,3I (𝑙)) of maximum circular
codes MC, number sc(V1,2,3I (𝑙)) of self-complementary circular
codes SC, number 𝑐

3
(V1,2,3I (𝑙)) of circular codes 𝐶

3, and number
msc3(V1,2,3I (𝑙)) of 𝐶3 self-complementary maximum circular codes
MSC3.

𝑙
V1,2,3I (𝑙)

𝑐 mc sc 𝑐
3 msc3

{1, 19} 6 0 0 6 0

{2, 18} 17 5 7 17 5

{3, 17} 32 0 0 32 0

{4, 16} 47 10 17 45 9

{5, 15} 54 0 0 46 0

{6, 14} 51 12 19 31 7

{7, 13} 48 0 0 12 0

{8, 12} 53 13 11 2 2

{9, 11} 62 0 0 0 0

10 66 14 6 0 0

20 1 1 1 1 1

Table 8: Transversion II map V𝑖II(𝑙) in 𝑙 trinucleotides of the
common trinucleotide circular code 𝑋

0
. Number 𝑐(V𝑖II(𝑙)) of

circular codes 𝐶, number mc(V𝑖II(𝑙)) of maximum circular codes
MC, number sc(V𝑖II(𝑙)) of self-complementary circular codes SC,
number 𝑐

3
(V𝑖II(𝑙)) of circular codes 𝐶

3, and number msc3(V𝑖II(𝑙))
of 𝐶3 self-complementary maximum circular codes MSC3.

𝑙
V1II(𝑙) orV

3

II(𝑙) V2II(𝑙)

𝑐 mc sc 𝑐
3 msc3 𝑐 mc sc 𝑐

3 msc3

1 6 0 0 6 0 8 0 0 8 0

2 17 3 4 17 3 30 4 8 28 4

3 30 0 0 29 0 74 0 0 58 0

4 35 3 4 31 3 132 6 18 82 6

5 28 0 0 20 0 176 0 0 76 0

6 16 1 1 7 1 170 4 8 44 4

7 6 0 0 1 0 120 0 0 12 0

8 1 0 0 0 0 61 1 1 1 1

9 0 0 0 0 0 26 0 0 0 0

10 0 0 0 0 0 10 0 0 0 0

11 0 0 0 0 0 2 0 0 0 0

{12, . . . , 20} 0 0 0 0 0 0 0 0 0 0

3.3. Transversion II Map

3.3.1. Transversion II MapV𝑖
𝐼𝐼

Result 7 (Table 8). For 𝑙 = 1, . . . , 20

𝑐 (V
1

II (𝑙)) = 𝑐 (V
3

II (𝑙)) ,

mc (V1II (𝑙)) = mc (V3II (𝑙)) ,

sc (V1II (𝑙)) = sc (V3II (𝑙)) ,

𝑐
3
(V
1

II (𝑙)) = 𝑐
3
(V
3

II (𝑙)) ,

msc3 (V1II (𝑙)) = msc3 (V3II (𝑙)) .

(42)

The lists of trinucleotide circular codes 𝐶 associated with
𝑐(V1II(𝑙)) and 𝑐(V3II(𝑙)) are different for 𝑙 = 1, . . . , 8 (not
shown). No trinucleotide code is circular after a certain
number of transversions II V𝑖II in the trinucleotides of the
common trinucleotide circular code 𝑋

0
. Precisely, for 𝑙 =

9, . . . , 20

𝑐 (V
1

II (𝑙)) = 𝑐 (V
3

II (𝑙)) = 0 (43)

and for 𝑙 = 12, . . . , 20

𝑐 (V
2

II (𝑙)) = 0. (44)

The transversion II V𝑖II generates a maximum number of
trinucleotide circular codes 𝐶 for

max {𝑐 (V
𝑖

II (𝑙)) , 𝑖 = 1, 2, 3, 𝑙 = 1, . . . , 20}

= 𝑐 (V
2

II (5)) = 176

(45)

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for

max {msc3 (V𝑖II (𝑙)) , 𝑖 = 1, 2, 3, 𝑙 = 1, . . . , 20}

= msc3 (V2II (4)) = 6.

(46)

3.3.2. Transversion II MapV𝑖,𝑗
𝐼𝐼

Result 8 (Table 9). For 𝑙 = 1, . . . , 20

𝑐 (V
1,2

II (𝑙)) = 𝑐 (V
2,3

II (𝑙)) ,

mc (V1,2II (𝑙)) = mc (V2,3II (𝑙)) ,

sc (V1,2II (𝑙)) = sc (V2,3II (𝑙)) ,

𝑐
3
(V
1,2

II (𝑙)) = 𝑐
3
(V
2,3

II (𝑙)) ,

msc3 (V1,2II (𝑙)) = msc3 (V2,3II (𝑙)) .

(47)

The lists of trinucleotide circular codes 𝐶 associated with
𝑐(V1,2II (𝑙)) and 𝑐(V2,3II (𝑙)) are different for 𝑙 = 1, . . . , 5, 13, 14

(not shown). The distribution of trinucleotide codes which
are not circular under transversions II V

𝑖,𝑗

II in the trinu-
cleotides of the common trinucleotide circular code 𝑋

0
is

very unusual. Indeed, for 𝑙 = 6, . . . , 12, 15, . . . , 20

𝑐 (V
1,2

II (𝑙)) = 𝑐 (V
2,3

II (𝑙)) = 0 (48)

and for 𝑙 = 15, . . . , 20

𝑐 (V
1,3

II (𝑙)) = 0. (49)
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Table 9: Transversion II map V
𝑖,𝑗

II (𝑙) in 𝑙 trinucleotide of the common trinucleotide circular code 𝑋
0
. Number 𝑐(V

𝑖,𝑗

II (𝑙)) of circular codes
𝐶, number mc(V𝑖,𝑗II (𝑙)) of maximum circular codes MC, number sc(V𝑖,𝑗II (𝑙)) of self-complementary circular codes SC, number 𝑐3(V𝑖,𝑗II (𝑙)) of
circular codes 𝐶3, and number msc3(V𝑖,𝑗II (𝑙)) of 𝐶

3 self-complementary maximum circular codes MSC3.

𝑙
V1,2II (𝑙) orV2,3II (𝑙) V1,3II (𝑙)

𝑐 mc sc 𝑐
3 msc3 𝑐 mc sc 𝑐

3 msc3

1 5 1 0 5 0 8 0 0 8 0

2 11 2 3 10 2 40 4 8 30 4

3 13 2 0 11 0 132 0 0 72 0

4 8 1 1 7 1 312 6 22 117 6

5 2 1 0 2 0 532 0 0 130 0

6 0 0 0 0 0 662 4 24 92 4

7 0 0 0 0 0 592 0 0 34 0

8 0 0 0 0 0 389 1 9 4 1

9 0 0 0 0 0 188 0 0 0 0

10 0 0 0 0 0 87 0 1 2 0

11 0 0 0 0 0 54 0 0 6 0

12 0 0 0 0 0 34 0 2 7 0

13 1 0 0 0 0 14 0 0 4 0

14 1 0 0 0 0 3 0 1 3 0

{15, . . . , 20} 0 0 0 0 0 0 0 0 0 0

The transversion II V𝑖,𝑗II generates a maximum number of
trinucleotide circular codes 𝐶 for

max {𝑐 (V
𝑖,𝑗

II (𝑙)) , 𝑖, 𝑗 = 1, 2, 3, 𝑖 < 𝑗, 𝑙 = 1, . . . , 20}

= 𝑐 (V
1,3

II (6)) = 662

(50)

and a maximum number of 𝐶
3 self-complementary maxi-

mum circular codes MSC3 for

max {msc3 (V𝑖,𝑗II (𝑙)) , 𝑖, 𝑗 = 1, 2, 3, 𝑖 < 𝑗, 𝑙 = 1, . . . , 20}

= msc3 (V1,3II (4)) = 6.

(51)

The numbers 𝑐(V1,2II (𝑙)) = 𝑐(V2,3II (𝑙)) of circular codes 𝐶 have
a particular growth function

𝑐 (V
1,2

II (𝑙)) = 𝑐 (V
2,3

II (𝑙)) = 1 for 𝑙 = 13, 14,

𝑐 (V
1,2

II (𝑙)) = 𝑐 (V
2,3

II (𝑙)) = 0 for 𝑙 = 6, . . . , 12.

(52)

3.3.3. Transversion II MapV1,2,3
𝐼𝐼

Proposition 37. For 𝑙 = 1, . . . , 19

𝑐 (V
1,2,3

II (𝑙)) = 0 (53)

and obviously, by letter invariance, 𝑐(V1,2,3II (20)) = 1 as in
Tables 4 and 7.

Proof. The common trinucleotide circular code 𝑋
0
can be

partitioned according to the maps V1,2,3II , P, and P2 as
shown in Table 10.

Let a partition P
𝑖
= {𝑥, 𝑥

󸀠
}, 𝑖 ∈ {1, . . . , 10}, composed of

two trinucleotides 𝑥, 𝑥󸀠 ∈ 𝑋
0
. For 𝑙 = 1, any transversion II

of a trinucleotide 𝑥 ∈ P
𝑖
generates a trinucleotide 𝑦 which is

a permuted trinucleotide of the other trinucleotide 𝑥
󸀠
∈ P
𝑖
.

So, any transversion II of a trinucleotide 𝑥 ∈ 𝑋
0
leads to a

trinucleotide code which is not circular. For 2 ≤ 𝑙 ≤ 19,
the proof needs a computer analysis of the necklace for the
nontrivial cases when two transversions II occur with two
trinucleotides in the same partitions.

Remark 38. Very surprisingly, for the three maps of tran-
sition, transversions I and II, T𝑖(𝑙), V𝑖I(𝑙), and V𝑖II(𝑙), 𝑖 ∈

{1, 2, 3}, T𝑖,𝑗(𝑙), V𝑖,𝑗I (𝑙), and V
𝑖,𝑗

II (𝑙), 𝑖, 𝑗 ∈ {1, 2, 3} with 𝑖 < 𝑗

and T1,2,3(𝑙) (not for V1,2,3I (𝑙) and V1,2,3II (𝑙)), the numbers
msc3 of self-complementary maximum circular codes MSC3
for the first even values of 𝑙 follow a series of binomial
coefficients. ForT𝑖(𝑙),V𝑖I(𝑙), andV

𝑖

II(𝑙), 𝑖 ∈ {1, 2, 3},T1,2(𝑙),
T2,3(𝑙), and V

𝑖,𝑗

II (𝑙), 𝑖, 𝑗 ∈ {1, 2, 3} with 𝑖 < 𝑗, the numbers
mc of maximum circular codes MC for the first even values
of 𝑙 follow a series of binomial coefficients. For T1,2,3(𝑙), the
numbers 𝑐3 of circular codes 𝐶3 for the values 𝑙 and (20 − 𝑙)

with 𝑙 = 1, . . . , 8 follow a series of binomial coefficients.These
binomial properties with some numbers of circular codes for
the three maps of transition, transversions I and II have no
combinatorial explanation so far.

4. Conclusion

A comprehensive computer analysis of transition and
transversions I and II in the 𝐶

3 self-complementary maxi-
mum circular code 𝑋

0
shows some new results; in particular

(i) transversion I V2I (𝑙) on the 2nd position of any subset
of trinucleotides of 𝑋

0
generates trinucleotide circular codes
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Table 10

Partition of 𝑋
0

𝑋
0

V1,2,3II (𝑋
0
) = 𝑋

2
P(𝑋
2
) = 𝑋

󸀠

0
V1,2,3II (𝑋

󸀠

0
) = 𝑋

1
P2(𝑋

1
) = 𝑋

0

P
1
= {𝐴𝐴𝐶,𝐴𝐶𝐶} 𝐴𝐶𝐶 𝐶𝐴𝐴 𝐴𝐴𝐶 𝐶𝐶𝐴 𝐴𝐶𝐶

P
2
= {𝐴𝐴𝑇,𝐺𝐶𝐶} 𝐺𝐶𝐶 𝑇𝐴𝐴 𝐴𝐴𝑇 𝐶𝐶𝐺 𝐺𝐶𝐶

P
3
= {𝐴𝑇𝐶,𝐺𝐴𝐶} 𝐴𝑇𝐶 𝐶𝐺𝐴 𝐺𝐴𝐶 𝑇𝐶𝐴 𝐴𝑇𝐶

P
4
= {𝐴𝑇𝑇,𝐺𝐺𝐶} 𝐴𝑇𝑇 𝐶𝐺𝐺 𝐺𝐺𝐶 𝑇𝑇𝐴 𝐴𝑇𝑇

P
5
= {𝐶𝐴𝐺, 𝑇𝐴𝐶} 𝑇𝐴𝐶 𝐺𝐶𝐴 𝐶𝐴𝐺 𝐴𝐶𝑇 𝑇𝐴𝐶

P
6
= {𝐶𝑇𝐶,𝐺𝐴𝐴} 𝐶𝑇𝐶 𝐴𝐺𝐴 𝐺𝐴𝐴 𝑇𝐶𝐶 𝐶𝑇𝐶

P
7
= {𝐶𝑇𝐺,𝐺𝑇𝐴} 𝐶𝑇𝐺 𝐴𝐺𝑇 𝐺𝑇𝐴 𝑇𝐺𝐶 𝐶𝑇𝐺

P
8
= {𝐺𝐴𝐺, 𝑇𝑇𝐶} 𝑇𝑇𝐶 𝐺𝐺𝐴 𝐺𝐴𝐺 𝑇𝐶𝑇 𝑇𝑇𝐶

P
9
= {𝐺𝐴𝑇, 𝐺𝑇𝐶} 𝐺𝑇𝐶 𝑇𝐺𝐴 𝐺𝐴𝑇 𝑇𝐶𝐺 𝐺𝑇𝐶

P
10

= {𝐺𝐺𝑇, 𝐺𝑇𝑇} 𝐺𝑇𝑇 𝑇𝐺𝐺 𝐺𝐺𝑇 𝑇𝑇𝐺 𝐺𝑇𝑇

which are always 𝐶
3 and (ii) transversion II V1,2,3II on the

three positions of any subset of trinucleotides of 𝑋
0
yields

no trinucleotide circular codes. In addition to the classical
self-complementary (Definition 20) partition of 𝑋

0
known

since 1996, a new partition of 𝑋
0
based on the transversion

II map V1,2,3II (Definition 33) and the circular permutation
mapsP andP2 (Definition 18) is also identified here. These
results here extend our theory of circular code in genes to its
evolution under transition and transversion.
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