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We recently introduced a new molecular evolution model called the IDIS model for Insertion Deletion
Independent of Substitution [13,14]. In the IDIS model, the three independent processes of substitution,
insertion and deletion of residues have constant rates. In order to control the genome expansion during
evolution, we generalize here the IDIS model by introducing an insertion rate which decreases when the
sequence grows and tends to 0 for a maximum sequence length nmax.

This new model, called LIIS for Limited Insertion Independent of Substitution, defines a matrix differ-
ential equation satisfied by a vector PðtÞ describing the sequence content in each residue at evolution
time t. An analytical solution is obtained for any diagonalizable substitution matrix M. Thus, the LIIS
model gives an expression of the sequence content vector PðtÞ in each residue under evolution time t
as a function of the eigenvalues and the eigenvectors of matrix M, the residue insertion rate vector R,
the total insertion rate r, the initial and maximum sequence lengths n0 and nmax, respectively, and the
sequence content vector Pðt0Þ at initial time t0. The derivation of the analytical solution is much more
technical, compared to the IDIS model, as it involves Gauss hypergeometric functions.

Several propositions of the LIIS model are derived: proof that the IDIS model is a particular case of the
LIIS model when the maximum sequence length nmax tends to infinity, fixed point, time scale, time step
and time inversion. Using a relation between the sequence length l and the evolution time t, an expres-
sion of the LIIS model as a function of the sequence length l ¼ nðtÞ is obtained. Formulas for ‘insertion
only’, i.e. when the substitution rates are all equal to 0, are derived at evolution time t and sequence
length l. Analytical solutions of the LIIS model are explicitly derived, as a function of either evolution time
t or sequence length l, for two classical substitution matrices: the 3-parameter symmetric substitution
matrix [12] (LIIS-SYM3) and the HKY asymmetric substitution matrix [9] (LIIS-HKY).

An evaluation of the LIIS model (precisely, LIIS-HKY) based on four statistical analyses of the GC content
in complete genomes of four prokaryotic taxonomic groups, namely Chlamydiae, Crenarchaeota, Spiro-
chaetes and Thermotogae, shows the expected improvement from the theory of the LIIS model compared
to the IDIS model.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction alized to asymmetric substitution matrices [6,30,9,32,31,38,7] with
Substitution, insertion and deletion of nucleotides are impor-
tant molecular evolution processes. A major challenge for under-
standing genome and gene evolution is the mathematical
analysis of these three processes. Stochastic evolution models were
initially developed to study the substitution rates of nucleotides
(adenine A, cytosine C, guanine G, thymine T). The first substitution
models were based on symmetric substitution matrices with one
formal parameter for all nucleotide substitution types [10], two
formal parameters for the nucleotide transitions and transversions
[11] and three formal parameters for transitions and the two types
of transversions [12]. These substitution models were later gener-
an equilibrium distribution different from 1=4 for all nucleotides.
Over the last 20 years, only very few molecular evolution mod-

els were extended to the insertion and the deletion of residues
(nucleotides, amino acids) in addition to residue substitution.
These substitution insertion deletion (SID) models were designed
for statistical alignement of two sequences and can be divided into
three classes. A pioneering paper by Thorne et al. [34] proposed a
time-reversible Markov model for insertions and deletions (termed
the TKF91 model). This SID model represents the sequence evolu-
tion in two steps. First, the sequence is subject to an insertion-dele-
tion process which is homogeneous over all sites in the sequence.
Second, and conditional on the result of the insertion-deletion
process, a substitution process is applied to the two sequences.
The process is time-reversible whenever the substitution process
is. Some drawbacks of the preliminary TKF91 proposal have first
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been improved by the same authors with the TKF92 version of the
model [35]. Then, the original SID models have been later refined in
many ways, as for instance by Metzler [17] and Miklòs et al. [19]
(see e.g. [20] for a review). A second class of SID models was intro-
duced by McGuire et al. [16] who defined a Markov model by
extending the F84 substitution matrix [7] comprising the four
nucleotides to a substitution matrix of size five with one additional
line and one additional column for the gap character involved in
the alignment. Then, an insertion is described by the substitution
of a gap by a nucleotide whereas a deletion amounts to the substi-
tution of a nucleotide by a gap. The insertion rate is proportional to
the F84 substitution matrix equilibrium distribution. A third class
of SID models was introduced by Rivas [25] with a non-reversible
evolution model which extends the model of McGuire et al. [16] for
the evolution of sequences of residues in any alphabet of size K, i.e.
for any substitution matrix. The insertion rates are defined by ex-
plicit parameters and the deletion rate is uniform for all residues.
An analytical expression of the substitution probabilities Ptði; jÞ of
residue i by residue j over time t is given in the particular case
where the insertion rate is proportional to the substitution matrix
equilibrium distribution [26]. However, even if the insertion pro-
cess is independent of the substitution process, the substitution
and deletion processes are not independent. Indeed, the occur-
rence probability PiðtÞ of residue i at time t which can be derived
from Ptði; jÞ depends on the deletion rate. However, a deletion rate
which is identical for all residues (uniform deletion rate) is ex-
pected to alter the sequence length but obviously not the residue
distribution (detailed in Introduction in [14]).

Inspired by a concept in population dynamics [15], we have
developed a dynamic evolution model, called the IDIS model,
where the three processes of substitution, insertion and deletion
of nucleotides are independent of each other [13,14]. The IDIS
model gives an analytical expression of the sequence content vec-
tor P tð Þ at evolution time t [13] or P lð Þ at sequence length l [14] for
any diagonalizable substitution matrix M as a function of the
eigenvalues and the eigenvectors of matrix M, the vector R of the
residue insertion rates, the total insertion rate r, the deletion rate
d and the vector of initial sequence content P t0ð Þ at evolution time
t0 or P n0ð Þ at sequence length n0. It presents several interesting
mathematical properties compared to all mathematical models in
this research field: (i) it has a uniform deletion rate which does
not alter the sequence content as expected from a probabilistic
point of view; (ii) it relies on a real physical process of sequence
evolution, in other words, the analytical expressions of the se-
quence content at time t are identical (by numerical approxima-
tions) to the values obtained by simulating sequence evolution
under substitution, insertion and deletion; thus, it allows a realistic
interpretation of the model parameters (evolution time t, sequence
length l and rates of substitution, insertion and deletion); (iii) it al-
lows the mathematical analysis of the sequence content curves
along time with local/global maxima or minima, increasing or
decreasing curves, crossing curves, asymptotic behavior, etc.; (iv)
it provides a description of the sequence content evolution and
in particular the evolution of motif content inside the sequence,
contrary to the phylogenetic approaches for tree reconstruction;
and (v) it extends our previous approaches developed over the last
20 years for substitution models (e.g. [1,2,18,4,5]) which allowed
to introduce models of ‘primitive’ genes or ‘primitive’ motifs of
nucleotides or amino acids, to study substitution rates, to analyse
the residue occurrence probabilities in the natural evolution time
direction (from past to present or from present to future) or in
the inverse direction (from present to past).

In the IDIS model, the growth rate describing the insertion pro-
cess is constant. We generalize here the IDIS model with an inser-
tion process whose rate varies during evolution time. In a concept
similar to the limited growth model for population dynamics by
Verhulst [36], the insertion rate decreases when the sequence
grows and tends to 0 for a maximum sequence length nmax. This
new model, called LIIS for Limited Insertion Independent of Substi-
tution, is defined by a matrix differential equation, for which an
analytical solution is obtained for any diagonalizable substitution
matrix M and involves Gauss hypergeometric functions. Thus, the
LIIS model gives an analytical expression of the content vector
PðtÞ in each residue in the sequence at evolution time t as a func-
tion of the eigenvalues and the eigenvectors of matrix M, the resi-
due insertion rate vector R, the total insertion rate r, the initial and
maximum sequence lengths n0 and nmax, respectively, and the ini-
tial sequence content vector Pðt0Þ at initial time t0.

This paper is organized as follows. Section 2 introduces the
mathematical model LIIS. Section 3 gives several propositions of
the LIIS model: proof that the IDIS model is a particular case of
the LIIS model when the maximum sequence length nmax tends to
infinity, residue equilibrium distribution, time scale, time step
and time inversion. Section 4 derives an expression of the LIIS mod-
el as a function of the sequence length l ¼ nðtÞ. Section 5 gives for-
mulas for ‘insertion only’, i.e. when the substitution rates are all
equal to 0, both at evolution time t and sequence length l. Section 6
derives the analytical solutions of the LIIS model for the two clas-
sical substitution matrices both at evolution time t and sequence
length l: the 3-parameter symmetric substitution matrix [12]
(LIIS-SYM3) and the HKY asymmetric substitution matrix [9]
(LIIS-HKY). In Section 7, an evaluation of the LIIS model (precisely,
LIIS-HKY) based on four statistical analyses of the GC content in
complete genomes of four prokaryotic taxonomic groups, namely
Chlamydiae, Crenarchaeota, Spirochaetes and Thermotogae, shows
the expected improvement from the theory of the LIIS model com-
pared to the IDIS model.

2. Mathematical model

We present here a new molecular evolution model for Limited
Insertion Independent of Substitution (LIIS). The originality of the
LIIS model relies on two points: (i) as in the IDIS model, the inser-
tion process is independent of the substitution process; and (ii)
contrary to the IDIS model, the insertion rate is time dependent,
decreases when the sequence grows and tends to 0 for a maximum
sequence length nmax. Hence, the LIIS model generalizes the IDIS
model in the particular case of an insertion-substitution model
(Proposition 3 in Section 3).

Before deriving the general LIIS model equation, we analyse the
limited insertion and the substitution processes separately by
building a specific differential equation for each evolution process.

2.1. Limited insertion model

Let us consider an alphabet of K residues, e.g. K ¼ 4 for nucleo-
tides and K ¼ 20 for amino acids. For all 1 6 i 6 K , we denote by
niðtÞ the occurrence number of residue i in the sequence at time t
and by nðtÞ ¼

P
16i6K niðtÞ the sequence length. In the IDIS model,

the growth rate of residue i resulting from the insertion-deletion
process is assumed to be equal to n0iðtÞ ¼

@niðtÞ
@t ¼ rinðtÞ � dniðtÞ, for

all 1 6 i 6 K , where ri is a specific instantaneous insertion rate
for each residue i and d is a uniform deletion rate applied to any
residue. Thus, the sequence length nðtÞ at time t is equal to the ex-
pected length of a random sequence subject to a linear birth–death
process with birth rate equal to k ¼

P
irinðtÞ and a death rate equal

to l ¼ dnðtÞ, i.e. nðtÞ ¼ n0eð
P

i
ri�dÞt where n0 is the initial sequence

length.
In order to generalize the IDIS model where the sequence

growth rate is constant, we now consider in the LIIS model that
the residue insertion rate depends on the sequence length.
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Similarly to the population dynamics model introduced by Ver-
hulst [36], we set the growth rate n0iðtÞ of residue i at time t in
the limited insertion process equal to, for all 1 6 i 6 K ,

n0iðtÞ ¼ ri 1� nðtÞ
nmax

� �
nðtÞ ð2:1Þ

where nmax is the maximal sequence length which modulates the
insertion process (nmax P 2, see Condition of Eq. (2.12)). Note that,
as in the IDIS model, the insertion process is modelled by explicit
parameters which are set independently of the substitution param-
eters: ri, the insertion rate per site of each residue i;81 6 i 6 K ,
ri P 0.

Remark 1. limnðtÞ!nmax n0iðtÞ ¼ 0. When the sequence length nðtÞ
increases to nmax then the growth rate n0iðtÞ of residue i decreases to
0 and only the substitution process is active.
Remark 2. lim nðtÞ
nmax

!0n0iðtÞ ¼ rinðtÞ. When the sequence length nðtÞ is

much smaller than nmax (nðtÞ � nmax) then the growth rate n0iðtÞ of
residue i in the LIIS model is equal to the growth rate of residue i in
the IDIS model (Eq. (2.5) with d ¼ 0 in [13]).

Let r ¼
P

16i6K ri be the total residue insertion rate. The total se-
quence length variation rate n0ðtÞ ¼

P
16i6K n0iðtÞ is equal to

n0ðtÞ ¼ r 1� nðtÞ
nmax

� �
nðtÞ: ð2:2Þ

The solution of this differential Eq. (2.2) with initial sequence length
n0 at time t0 gives

nðtÞ ¼ n0

sþ ð1� sÞe�rðt�t0Þ
ð2:3Þ

with s ¼ n0
nmax

.
Let PiðtÞ ¼ niðtÞ

nðtÞ be the sequence content in residue i at time t P 0.
The column vector PðtÞ ¼ PiðtÞ½ �16i6K of size K is made of the se-
quence content PiðtÞ in residue i for all 1 6 i 6 K. Using Eqs. (2.1)
and (2.2), the derivative P0iðtÞ of the sequence content in residue i
at time t in the limited insertion process reads

P0iðtÞ ¼
@

@t
niðtÞ
nðtÞ

� �
¼ n0iðtÞnðtÞ � niðtÞn0ðtÞ

n2ðtÞ ¼ n0iðtÞ
nðtÞ �

n0ðtÞ
nðtÞ PiðtÞ

¼
ri 1� nðtÞ

nmax

� �
nðtÞ

nðtÞ � r 1� nðtÞ
nmax

� �
PiðtÞ

¼ 1� nðtÞ
nmax

� �
ri � rPiðtÞð Þ:

Finally, the derivative P0ðtÞ of the sequence content at time t in the
limited insertion process is modelled by

P0ðtÞ ¼ hðtÞ R� rPðtÞð Þ ð2:4Þ

where r ¼
P

16i6K ri is the total residue insertion rate, R ¼ ri½ �16i6K is
the vector of residue insertion rates and hðtÞ ¼ 1� nðtÞ

nmax
is, using Eq.

(2.3), equal to

hðtÞ ¼ 1� s
sþ ð1� sÞe�rðt�t0Þ

: ð2:5Þ
2.2. Substitution model

The sequence content evolution due to the substitution process
is defined as in the IDIS model, i.e. such that the sequence content
vector PðtÞ ¼ PiðtÞ½ �16i6K is equal to the expected content of a ran-
dom sequence subject to a classical substitution process defined
by a constant substitution rate matrix, each site in the sequence
being independent and identically distributed.
Thus, the substitution process is handled by the following dif-
ferential equation (e.g. [18]) which determines the sequence con-
tent vector P tð Þ for all time t P 0,

P0ðtÞ ¼ M � PðtÞ � PðtÞ ¼ M � Ið Þ � PðtÞ ð2:6Þ

where M ¼ ½mij�16i;j6K is a constant substitution rate matrix, stochas-
tic in column, i.e. with element mij ¼ Pðj! iÞ in row i and column j
referring to the substitution rate of residue j into residue i, matrix I
is the identity matrix of size K and the symbol � is the matrix
product.

Remark 3. The substitution rate matrix M is the transpose matrix
of the classical substitution matrix p ¼ Pði! jÞ½ �16i;j6K which is
stochastic in line (e.g. [11,12]), i.e. pij ¼ mji.
2.3. LIIS model: limited insertion independent of substitution

The substitution and the limited insertion processes are as-
sumed to be independent. From the two differential equations
describing the residue substitution (Eq. (2.6)) and the residue lim-
ited insertion (Eq. (2.4)), we derive a general matrix differential
equation allowing for these two processes to be superimposed.
Then, the derivative P0ðtÞ of the sequence content at time t is the
result of the instantaneous variation due to substitution and lim-
ited insertion, and the sequence content vector PðtÞ ¼ PiðtÞ½ �16i6K

satisfies

P0ðtÞ ¼ M � Ið Þ � PðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Substitution

þ hðtÞ R� rPðtÞð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Limited insertion

¼ AðtÞ � PðtÞ þ hðtÞR ð2:7Þ

where AðtÞ ¼ M � ð1þ rhðtÞÞI; hðtÞ is defined in Eq. (2.5), M is the
substitution rate matrix defined in Eq. (2.6), R ¼ ri½ �16i6K is the vec-
tor of the residue insertion rates per site and r ¼

P
16i6K ri is the total

residue insertion rate, 81 6 i 6 K , ri P 0.
This nonhomogeneous matrix linear differential equation with

non-constant coefficients can be easily solved in the particular case
where, for all s; t P 0, matrices AðtÞ and AðsÞ commute (Section 3.4
of Part I in [33]). This condition is satisfied here as the time depen-
dent term hðtÞ in matrix AðtÞ ¼ M � ð1þ rhðtÞÞI is in the diagonal.
Then, for all s; t P 0; ½AðtÞ;AðsÞ� ¼ AðtÞAðsÞ � AðsÞAðtÞ ¼ 0 and the
solution of Eq. (2.7) is, for all t P 0, for all initial time t0 P 0,

Pðt; t0; Pðt0ÞÞ ¼ e
R t

t0
AðuÞdu

� �
� Pðt0Þ þ

Z t

t0

hðsÞe
R t

s
AðuÞdu

� �
� Rds: ð2:8Þ

When the substitution rate matrix M is diagonalizable with real
eigenvalues ðkkÞ16k6K then AðtÞ is also diagonalizable with real
eigenvalues equals to ðkk � 1� rhðtÞÞ16k6K . Indeed, if matrix M
decomposes as M ¼ Q � D � Q�1 where D ¼ DiagððkkÞ16k6KÞ is the
eigenvalues diagonal matrix and Q is an associated eigenvectors
matrix, the kth column of Q being an eigenvector for eigenvalue
kk, then AðtÞ ¼ M � ð1þ rhðtÞÞI ¼ Q � D � Q�1 � ð1þ rhðtÞÞI ¼
Q � eDðtÞ � Q�1 where matrix eDðtÞ ¼ D� ð1þ rhðtÞÞI ¼ Diag kk�ðð
1� rhðtÞÞ16k6KÞ.

We derive an analytical solution of the matrix differential Eq.
(2.8) defining the LIIS model for all diagonalizable substitution ma-
trix M and for all initial time t0. Proposition 1 gives the sequence
content vector Pðt; t0; Pðt0ÞÞ under evolution time t as a function
of the eigenvalues of M and the associated eigenvector matrix Q,
the residue insertion rate vector R, the total residue insertion rate
r, the initial sequence length n0 at time t0, the maximum sequence
length nmax and the initial sequence content vector Pðt0Þ at initial
time t0. Proposition 2 is a particular case of Proposition 1 with
t0 ¼ 0. The analytical solutions of the LIIS model are more general
and advanced than the solutions previously obtained with the IDIS
model [13]. In particular, they involve several Gauss hypergeomet-
ric functions in addition to the classical exponential terms.
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Proposition 1. Given an initial time t0 P 0, the sequence content
vector Pðt; t0; Pðt0ÞÞ at time t is, for all t P 0,

Pðt; t0; Pðt0ÞÞ ¼
X

k

Ok � d1ðt; k; t0ÞPðt0Þ þ d2ðt; k; t0ÞR½ � ð2:9Þ

where R ¼ ri½ �16i6K is the vector of residue insertion rates, Pðt0Þ is the
initial sequence content vector at an initial time t0, for all 1 6 k 6 K,
matrix Ok of size K � K is defined from the eigenvector matrix Q of sub-
stitution rate matrix M as follows

Ok½i; j� ¼ Q ½i; k�Q�1½k; j� ð2:10Þ

and the two scalar terms are defined by

d1ðt; k; t0Þ ¼ sþ 1� sð Þe�rðt�t0Þ
� �

e� 1�kkð Þðt�t0Þ ð2:11Þ

and, with r ¼
P

16i6K ri > 0 and 1 6 n0 < nmax,

d2ðt;k;t0Þ¼
1
r

1� sþð1�sÞe�rðt�t0Þ
� �

e� 1�kkð Þðt�t0Þþ 1�kk

ðs�1Þ 1�kkþrð Þ

�	
� e� 1�kkð Þðt�t0Þ

2F 1ðk;1Þ�erðt�t0Þ
2F 1ðk;erðt�t0ÞÞ

� ��

ð2:12Þ

where ðkkÞ16k6K are the eigenvalues of matrix M, s ¼ n0
nmax

where n0 is
the initial sequence length and nmax is the maximum sequence length
and, 81 6 k 6 K and 8x P 0; 2F 1ðk; xÞ is the Gauss hypergeometric
function

2F 1ðk; xÞ ¼ H2F1 1;1þ 1� kk

r
;2þ 1� kk

r
;

s
s� 1

x
	 


:

Proof. In order to obtain an analytical expression of Eq. (2.8), we

first evaluate the term e
R t

t0
AðuÞdu

� �
using successively the diagonal-

ization of matrix AðtÞ, the time independence of matrix Q and the

equality eQ �D�Q�1 ¼ Q � eD � Q�1,

e
R t

s
AðuÞdu

� �
¼ e

R t

s
Q �Diag kk�1�rhðuÞð Þ16k6Kð Þ�Q�1du

� �
¼ e

Q �
R t

s
Diag kk�1�rhðuÞð Þ16k6Kð Þdu

� �
�Q�1

¼ Q � e
R t

s
Diag kk�1�rhðuÞð Þ16k6Kð Þdu

� �
� Q�1

¼ Q � e
�r
R t

s
hðuÞdu

� �
Iþðt�sÞDiag kk�1ð Þ16k6Kð Þ � Q�1

¼ Q � Diag d1ðs; t; k; t0Þ16k6K

� �
� Q�1

¼
X

k

d1ðs; t; k; t0ÞQ ½i; k�Q�1½k; j�
 !

16i;j6K

¼
X

k

d1ðs; t; k; t0ÞOk½i; j�
 !

16i;j6K

¼
X

k

d1ðs; t; k; t0ÞOk ð2:13Þ

where, after some algebraic manipulation,

d1ðs; t; k; t0Þ ¼
1� sþ serðt�t0Þ

1� sþ serðs�t0Þ
e� 1�kkþrð Þðt�sÞ:

The analytical expression of the first term of Eq. (2.8) is obtained
from Eq. (2.13) with s ¼ t0,

e
R t

t0
AðuÞdu

� �
¼
X

k

d1ðt; k; t0ÞOk

where d1ðt; k; t0Þ ¼ d1ðt0; t; k; t0Þ is Eq. (2.11).
Using Eq. (2.13) and the time independence of vector R and
matrix Ok, we now evaluate the second term of Eq. (2.8)

Z t

t0

hðsÞe
R t

s
AðuÞdu

� �
� Rds ¼

Z t

t0

hðsÞ
X

k

d1ðs; t; k; t0ÞOk

 !
� Rds

¼
X

k

Z t

t0

hðsÞd1ðs; t; k; t0Þds
� �

Ok

 !
� R

¼
X

k

d2ðt; k; t0ÞOk

 !
� R

where, after some algebraic manipulation, d2ðt; k; t0Þ is Eq. (2.12).
Finally, from Eq. (2.8), for all t0; t P 0, we obtain the following

analytical expression of the sequence content vector Pðt; t0; Pðt0ÞÞ
as a function of t0 and Pðt0Þ,

Pðt; t0; Pðt0ÞÞ ¼
X

k

d1ðt; k; t0ÞOk � Pðt0Þ þ
X

k

d2ðt; k; t0ÞOk

 !
� R

¼
X

k

d1ðt; k; t0ÞOk � Pðt0Þ þ d2ðt; k; t0ÞOk � R½ �

¼
X

k

Ok � d1ðt; k; t0ÞPðt0Þ þ d2ðt; k; t0ÞR½ �

which is Eq. (2.9). h
Remark 4. The eigenvalues of stochastic matrix M satisfy
81 6 k 6 K; 0 < kk 6 1 with one eigenvalue equal to 1 (Perron–
Frobenius theorem ensures that the largest eigenvalue of a sto-
chastic matrix is always 1). Then, the denominator ð1� kk þ rÞ in
Eq. (2.12) is not null whenever the total residue insertion rate
r > 0.
Remark 5.
P

16k6K Ok ¼ Q :Q�1 ¼ I. Indeed, using Definition (2.10)
of matrix Ok and for all i; j,

P
16k6K Ok½i; j� ¼

P
16k6K Q ½i; k�Q�1½k; j� is

the term in row i and column j of the matrix product Q :Q�1. Thus,
the sum of matrices fOkgk is equal to the identity matrix.
Proposition 2. The sequence content vector Pðt; 0; Pð0ÞÞ at time t as a
function of an initial sequence content vector Pð0Þ is, for all t P 0,

Pðt; 0; Pð0ÞÞ ¼
X

k

Ok � d1ðt; k;0ÞPð0Þ þ d2ðt; k;0ÞR½ � ð2:14Þ

where

d1ðt; k;0Þ ¼ sþ 1� sð Þe�rt
� �

e� 1�kkð Þt ð2:15Þ

and

d2ðt; k;0Þ ¼1
r

1� sþ ð1� sÞe�rt
� �

e� 1�kkð Þt þ 1� kk

ðs� 1Þ 1� kk þ rð Þ

�	
� e� 1�kkð Þt

2F 1ðk;1Þ � ert
2F 1ðk; ertÞ

� ��

ð2:16Þ

where the parameters are defined in Proposition 1.
Proof. Straightforward from Proposition 1 with t0 ¼ 0. h

Proposition 2 will be used to derive the sequence content vector
as a function of the sequence length (Section 4), the analytical for-
mulas for classical substitution matrices (Section 6) and the analyt-
ical formula of GC content for a practical evaluation of the LIIS
model (Section 7).
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3. Mathematical properties of the LIIS model

We set here five mathematical propositions which relate the
evolution time t to the values of the mutation parameters, i.e.
the substitution rate matrix M, the insertion rate vector R and
the maximum sequence length nmax. These propositions are impor-
tant to model gene evolution in practice.

Proposition 3 (Generalization of the IDIS model for substitution and
insertion). The IDIS model [13] is a particular case of the LIIS model
when nmax tends to infinity. The effect of the parameter nmax

modulating insertion during evolution of the sequence is removed
when nmax tends to infinity. This generalization is satisfied in three
ways:

(i) the insertion Eq. (2.1);
(ii) the global differential Eq. (2.7);

(iii) the Eq. (2.9) of the sequence content vector PðtÞ at time t.
Proof

(i) The term hðtÞ satisfies
lim
nmax!þ1

hðtÞ ¼ 1� nðtÞ
nmax

¼ 1: ð3:1Þ
Consequently, Eq. (2.1) of the growth rate of residue i becomes
n0iðtÞ ¼ rinðtÞ which is the growth rate of residue i in the IDIS model
(Eq. (2:5) with d ¼ 0 in [13]).

(ii) From Limit (3.1), the matrix differential Eq. (2.7) becomes
P0ðtÞ ¼ ðM � ð1þ rÞIÞ � PðtÞ þ R which is the matrix differen-
tial equation of the IDIS model (Eq. (2:8) with d ¼ 0 in [13]).

(iii) The term s satisfies
lim
nmax!þ1

s ¼ n0

nmax
¼ 0:
Then, 81 6 k 6 K and 8x P 0,
lim
s!0

2F 1ðk; xÞ ¼ lim
s!0

H2F1 1;1þ 1� kk

r
;2þ 1� kk

r
;

s
s� 1

x
	 


¼ 2F 1ðk;0Þ ¼ 1:

Thus, the terms d1ðt; k; t0Þ and d2ðt; k; t0Þ satisfy

lim
nmax!þ1

d1ðt; k; t0Þ ¼ e� 1�kkþrð Þðt�t0Þ

and

lim
nmax!þ1

d2ðt; k; t0Þ ¼
1� e� 1�kkþrð Þðt�t0Þ

1� kk þ r
:

Finally, the limit of Eq. (2.9) is

lim
nmax!þ1

Pðt; t0; Pðt0ÞÞ ¼
X

k

Ok � e� 1�kkþrð Þðt�t0ÞPðt0Þ þ
1� e� 1�kkþrð Þðt�t0Þ

1� kk þ r
R

	 

¼
X

k

Ok �
R

1� kk þ r
þ Pðt0Þ �

R
1� kk þ r

� �
e� 1�kkþrð Þðt�t0Þ

	 


¼
X

k

1
1� kk þ r

Ok

 !
� R

þ
X

k

Ok � Pðt0Þ �
1

1� kk þ r
R

� �
e� 1�kkþrð Þðt�t0Þ:

With t0 ¼ 0, i.e. with an initial sequence content vector Pð0Þ, the se-
quence content Pðt; 0; Pð0ÞÞ satisfies limnmax!þ1Pðt; 0; Pð0ÞÞ ¼P

k
1

1�kkþr Ok

� �
� Rþ

P
kOk � Pð0Þ � 1

1�kkþr R
� �

e� 1�kkþrð Þt which is the

analytical expression of the sequence content PðtÞ at time t of the
IDIS model (Eq. (2.13) in [13]). h
Proposition 4 (Fixed point). The LIIS model admits a fixed point
equal to the equilibrium distribution pI

M of the stochastic substitution
model defined by matrix M. This fixed point is reached by the sequence
content vector after an infinite amount of time,

lim
t!1

Pðt; t0; Pðt0ÞÞ ¼ pI

M : ð3:2Þ
Proof. When evolution time t tends to infinity, the sequence
length reaches its maximum nmax and the insertion rate tends to
0. Then, only the substitution process is active. Indeed, when time
tends to infinity, the fixed point of the sequence content vector
Pðt; t0; Pðt0ÞÞ at time t (Eq. (2.9)) simplifies as follows. From Remark
4, one eigenvalue of stochastic matrix M denoted kK is equal to 1
with a multiplicity equal to 1 (see also e.g. in Section 6 for the 3-
parameter symmetric and HKY substitution matrices).

For kK ¼ 1, from Eq. (2.11), d1ðt; K; t0Þ ¼ sþ ð1� sÞe�rðt�t0Þ and
thus,

lim
t!1

d1ðt; K; t0Þ ¼ s

and from Eq. (2.12), d2ðt; K; t0Þ ¼ 1�s�ð1�sÞe�rðt�t0Þ

r and thus,

lim
t!1

d2ðt; K; t0Þ ¼
1� s

r
:

For all other eigenvalues, i.e. for all k – K , then kk < 1 and from Eq.
(2.11),

lim
t!1

d1ðt; k; t0Þ ¼ 0

as for all kk < 1; limt!1e� 1�kkþrð Þðt�t0Þ ¼ 0 and from Eq. (2.12),

lim
t!1

d2ðt; k; t0Þ ¼ 0

as for all kk < 1; limt!1e� 1�kkð Þðt�t0Þ ¼ 0 and limt!1 � erðt�t0Þ

2F 1ðk; erðt�t0ÞÞ ¼ ðs�1Þ 1�kkþrð Þ
sð1�kkÞ

.
Then, the limit of the sequence content vector Pðt; t0; Pðt0ÞÞ

defined in Eq. (2.9) when time t tends to infinity satisfies

lim
t!1

Pðt; t0; Pðt0ÞÞ ¼ OK � lim
t!1

d1ðt; K; t0ÞPðt0Þ þ lim
t!1

d2ðt; K; t0ÞR
h i

¼ OK � sPðt0Þ þ 1� sð ÞR
r

� �
¼ sOK � Pðt0Þ þ ð1� sÞOK �

R
r
: ð3:3Þ

The eigenvector associated to kK ¼ 1 is the equilibrium distribution
pI

M of the substitution model. The columns of matrix OK are all equal
to pI

M . For example, for the classical substitution matrices (K ¼ 4),
O4 ¼ ð14Þ16i;j6K for the 3-parameter and each column of matrix O4 is
pA;pC ;pG;pTð Þ for the HKY matrix (see also Section 6). Then, in

Eq. (3.3), vectors Pðt0Þ and R
r sum to 1, then OK � Pðt0Þ ¼ pI

M and
OK � R

r ¼ pI

M leading to limt!1Pðt; t0; Pðt0ÞÞ ¼ pI

M . h
Proposition 5 (Time scale). When multiplying all the substitution-
insertion parameters, i.e. the non-diagonal elements ½mij�i–j of the sub-
stitution rate matrix M and the insertion rates ½ri�, by a scalar a, the
sequence content vector Pðt; t0; Pðt0ÞÞ at time t given an initial time
t0 (Eq. (2.9)) is equal to the sequence content vector obtained at time
at and at initial time at0 with the substitution-insertion parameters
ð½mij�i–j; ½ri�Þ

Pðt; t0; Pðt0Þ; ½amij�i–j; ½ari�Þ ¼ Pðat;at0; Pðat0Þ; ½mij�i–j; ½ri�Þ: ð3:4Þ
Proof. The multiplication of the LIIS model parameters by a scalar
a leads to residue insertion rate vector eR ¼ aR, thus total insertion
rate er ¼ ar, and substitution rate matrix eM ¼ aM þ ð1� aÞI. The
substitution rate matrix M decomposes as M ¼ Q � D � Q�1 where



142 S. Lèbre, C.J. Michel / Mathematical Biosciences 245 (2013) 137–147
D ¼ DiagððkkÞ16k6KÞ is the eigenvalue diagonal matrix and Q is an
associated eigenvector matrix, the kth column of Q being an eigen-
vector of eigenvalue kk. Then, matrix eM decomposes aseM ¼ aQ � D � Q�1 þ ð1� aÞI ¼ Q � eD � Q�1 where matrixeD ¼ aDþ ð1� aÞI ¼ DiagððekkÞ16k6KÞ. Matrix eM can be diagonalized
with real eigenvalues ðekkÞ16k6K where ekk ¼ 1þ aðkk � 1Þ for all
1 6 k 6 K. Then, 1� ekk þ er ¼ a 1� kk þ rð Þ. Matrix Q, and conse-
quently the matrices Ok, remain unchanged. Then, for all
1 6 k 6 K; 1� ekk

� �
¼ að1� kkÞ and 1� ekk þ er� �

¼ að1� kk þ rÞ.
Finally, from Eq. (2.11),
d1ðt; k; t0; ½amij�i–j; ½ari�Þ ¼ ð1� sþ seerðt�t0ÞÞe� 1�ekkþerð Þðt�t0Þ

¼ ð1� sþ searðt�t0ÞÞe�að1�kkþrÞðt�t0Þ

¼ d1ðat; k;at0; ½mij�i–j; ½ri�Þ

and from Eq. (2.12),

d2ðt;k;t0; ½amij�i–j; ½ari�Þ ¼
1er 1� sþð1�sÞe�erðt�t0Þ

� �h
� e� 1�ekkð Þðt�t0Þ þ 1�ekk

ðs�1Þ 1�ekkþer� �
0@
� e� 1�ekkð Þðt�t0Þ

2F 1ðk;1Þ
�
�eerðt�t0Þ

2F 1ðk;eerðt�t0ÞÞ
��i

¼ 1
ar

1� sþð1�sÞe�arðt�t0Þ
� ��

� e�að1�kkÞðt�t0Þ þ að1�kkÞ
ðs�1Það1�kkþ rÞ

�
� e�að1�kkÞðt�t0Þ

2F 1ðk;1Þ
�
�earðt�t0Þ

2F 1ðk;earðt�t0ÞÞ
���

¼ 1
a

d2ðat;k;at0; ½mij�i–j; ½ri�Þ:

Consequently, in Eq. (2.9),

Pðt; t0; Pðt0Þ; ½amij�i–j; ½ari�Þ ¼
X

k

Ok � d1ðat; k;at0; ½mij�i–j; ½ri�ÞPðt0Þ
h

þ 1
a

d2ðat; k;at0; ½mij�i–j; ½ri�Þ
� �

aR



¼ Pðat; at0; Pðat0Þ; ½mij�i–j; ½ri�Þ: �
Proposition 6 (Time step). For all t0; t1; t2 > 0, the sequence content
vector satisfies
Pðt2Þ ¼ Pðt2; t0; Pðt0ÞÞ ¼ Pðt2; t1; Pðt1ÞÞ ¼ Pðt2; t1; Pðt1; t0; Pðt0ÞÞÞ:
ð3:5Þ
Proof. Straightforward from Eq. (2.8) with Pðt1Þ ¼ Pðt1; t0;

Pðt0ÞÞ. h
Proposition 7 (Time inversion). For all t0; t > 0 with t0 < t,

Pðt0; t; PðtÞÞ ¼
X

k

Ok � d1ðt0; k; tÞPðtÞ þ d2ðt0; k; tÞR½ �

¼
X

k

Ok � d1ð�t; k;�t0ÞPðtÞ þ d2ð�t; k;�t0ÞR½ �: ð3:6Þ
Proof. First line is straightforward from Eq. (2.9). Then, we have
directly d1ðt0; k; tÞ ¼ d1ð�t; k;�t0Þ from Eq. (2.11) and
d2ðt0; k; tÞ ¼ d2ð�t; k;�t0Þ from Eq. (2.12). h
Remark 6. Time inversion can be simply derived by replacing Pðt0Þ
by PðtÞ and ðt � t0Þ by ðt0 � tÞ in all analytical formulas.
4. Time and sequence length

We derive here the LIIS model for sequence length where the se-
quence content vector Pðl; n0; Pðn0ÞÞ is expressed as a function of
the sequence length l observed at evolution time t (l ¼ nðtÞ).

Proposition 8 (Time and sequence length). Given an initial sequence
length n0 ¼ nð0ÞP 1 observed at initial time t0 chosen equal to 0 for
convenience, the sequence content vector Pðl; n0; Pðn0ÞÞ at sequence
length l ¼ nðtÞ at time t is, for all l P 1,

Pðl; n0; Pðn0ÞÞ ¼
X

k

Ok � d1ðl; k;n0ÞPðn0Þ þ d2ðl; k;n0ÞR½ � ð4:1Þ

where matrices Okð Þ16k6K are defined in (2.10) from the eigenvector
matrix Q of substitution rate matrix M;R ¼ ri½ �16i6K is the vector of
the residue insertion rates per site, and Pðn0Þ is the initial sequence con-
tent vector at length n0 and

d1ðl; k;n0Þ ¼
n0

l
hðlÞ�

1�kk
r ð4:2Þ

d2ðl; k;n0Þ ¼
1
r

1� n0

l
hðlÞ�

1�kk
r þ 1� kk

ðs� 1Þ 1� kk þ rð Þ

�	
� hðlÞ�

1�kk
r

2F 1ðk;1Þ � hðlÞ2F 1 k;hðlÞð Þ
� ��


ð4:3Þ

where ðkkÞ16k6K are the eigenvalues of M, r ¼
P

16i6K ri is the
total residue insertion rate, s ¼ n0

nmax
where nmax is the

maximum sequence length and 8x P 0;81 6 k 6 K; 2F 1ðk; xÞ ¼
H2F1 1;1þ 1�kk

r ;2þ 1�kk
r ; s

s�1 x
h i

is the Gauss hypergeometric function
and

hðlÞ ¼ s� 1
s� n0

l

¼ ert: ð4:4Þ
Proof. Pðl; n0; Pðn0ÞÞ is obtained from Eq. (2.14). From Eq. (2.3), the
evolution time t between the sequence lengths nð0Þ ¼ n0 at time
t0 ¼ 0 and nðtÞ ¼ l at time t is l ¼ n0

sþð1�sÞe�rt leading to Eq. (4.4). Then,

d1ðl; k;n0Þ and d2ðl; k;n0Þ are obtained from Eq. (2.15) and (2.16),
respectively. Note that the denominator in Eq. (4.3) is not null
according to both Remark 4 and the conditions of Eq. (2.12). h
Remark 7. Eq. (4.1) is true for the very particular case l ¼ n0.
Indeed, for all 1 6 k 6 K; d1ðl; k;n0Þ ¼ 1 and d2ðl; k;n0Þ ¼ 0. Then,
from Eq. (4.1), Pðl; n0; Pðn0ÞÞ ¼

P
kOk � Pðn0Þ ¼ Pðn0Þ as

P
kOk ¼ I

(see Remark 5).
Remark 8. The IDIS model as a function of the sequence length
[14] is a particular case of the LIIS model when nmax tends to infin-
ity. We have the following limit: as s ¼ n0

nmax
, then

lim
nmax!1

s ¼ 0:

As

lim
s!0

hðlÞ ¼ l
n0

and 81 6 k 6 K;8x P 0,

lim
s!0

2F 1ðk; xÞ ¼ lim
s!0

H2F1 1;1þ 1� kk

r
;2þ 1� kk

r
;

s
s� 1

x
	 


¼ 2F 1ðk;0Þ ¼ 1

then,
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lim
s!0

d1ðl; k;n0Þ ¼
l

n0

� �� 1þ1�kk
r

� �

lim
s!0

d2ðl; k;n0Þ ¼
1

1� kk þ r
1� l

n0

� �� 1þ1�kk
r

� �0@ 1A:
Thus, from Eq. (4.1),

lim
nmax!1

Pðl;n0;Pðn0ÞÞ¼
X

k

Ok �
l

n0

� �� 1þ1�kk
r

� �
Pðn0Þþ

1
1�kkþr

24
� 1� l

n0

� �� 1þ1�kk
r

� �0@ 1AR

35
¼

X
k

1
1�kkþr

Ok

 !
�R

þ
X

k

Ok� Pðn0Þ�
1

1�kkþr
R

� �
l

n0

� �� 1þ1�kk
r

� �

which is the IDIS model as a function of the sequence length (Eq.
(10) with d ¼ 0 in [14]).
5. Insertion only model

Proposition 9 (Insertion only – evolution time). In the insertion only
model, i.e. the substitution rates are all equal to 0 (M ¼ I), and given
an initial time t0 P 0, then the sequence content vector Pðt; t0; Pðt0ÞÞ
at time t is

Pðt; t0; Pðt0ÞÞ ¼ sPðt0Þ þ 1� sð Þ R
r
þ Pðt0Þ �

R
r

� �
e�rðt�t0Þ

	 

ð5:1Þ

and given an initial time t0 ¼ 0; Pðt; t0; Pð0ÞÞ at time t is

Pðt; 0; Pð0ÞÞ ¼ sPð0Þ þ 1� sð Þ R
r
þ Pð0Þ � R

r

� �
e�rt

	 

: ð5:2Þ
Proof. In the insertion only model, substitutions are not allowed,
i.e. M ¼ I. Then, all the eigenvalues are equal to 1. Thus, for all
1 6 k 6 K , kk ¼ 1 and, from Eq. (2.11),

d1ðt; k; t0Þ ¼ sþ 1� sð Þe�rðt�t0Þ

and from Eq. (2.12), given that 8x P 0; H2F1 1;1;2; s
s�1 x

� �
¼

1�sð Þ ln 1þ sx
1�sð Þ

sx ,

d2ðt; k; t0Þ ¼
1
r

1� sð Þ 1� e�rðt�t0Þ
� �

:

Using Eq. (2.9) and
P

kOk ¼ I (Remark 5), then Pðt; t0; Pðt0ÞÞ is equal
to

Pðt;t0;Pðt0ÞÞ¼
X

k

Ok � sþ 1�sð Þe�rðt�t0Þ
� �

Pðt0Þþ 1�sð Þ 1�e�rðt�t0Þ
� �R

r

	 


¼
X

k

Ok

 !
sPðt0Þþ 1�sð ÞR

r
þ 1�sð Þ Pðt0Þ�

R
r

� �
e�rðt�t0Þ

� �
¼sPðt0Þþ 1�sð ÞR

r
þ 1�sð Þ Pðt0Þ�

R
r

� �
e�rðt�t0Þ:

Eq. (5.2) is obtained straightforward from Eq. (5.1) with t0 ¼ 0. h
Proposition 10 (Insertion only – sequence length). In the insertion
only model, the sequence content vector Pðl; n0; Pðn0ÞÞ at sequence
length l is, for all 0 6 l 6 nmax,

Pðl; n0; Pðn0ÞÞ ¼
R
r
þ Pðl0Þ �

R
r

� �
n0

l
: ð5:3Þ
Proof. Straightforward from Eqs. (5.2) and (4.4),

Pðl; n0; Pðn0ÞÞ ¼ sPðn0Þ þ 1� sð Þ R
r
þ Pðn0Þ �

R
r

� �
hðlÞ�1

	 

¼ R

r
þ Pðn0Þ �

R
r

� �
n0

l
: �
Remark 9. The sequence content vector Pðl; n0; Pðn0ÞÞ at sequence
length l is independent of the maximum sequence length nmax and
from the ratio s ¼ n0

nmax
. This a priori surprising observation is

explained by the fact that Pðl; n0; Pðn0ÞÞ is equal to the sequence
content vector obtained with the non-limited insertion model IDIS
at the same length l (Eq. (18) with d ¼ 0 in [14]). In the LIIS model,
the growth rate n0iðtÞ decreases in time due to parameter nmax (Eq.
2.1). However, from a sequence length point of view, the sequence
content for a given length is the same as the one obtained with a
non-limited insertion process. The only difference between the
two models is that the sequence spends more time in each length
when insertion is limited, i.e. in the LIIS model.
6. Analytical formulas for classical substitution matrices

6.1. LIIS-SYM3 analytical formula

The LIIS-SYM3 model gives the expression of nucleotide se-
quence content vector PðtÞ ¼ Pðt; 0; Pð0ÞÞ by deriving Eq. (2.14)
with the classical 3-parameter symmetric substitution matrix
MSYM3 [12]. This matrix MSYM3 is defined by three formal parame-
ters a; b, c: a is the rate of transitions A$ G and C $ T; b is the rate
of transversion type A$ T and C $ G, and c is the rate of transver-
sion type A$ C and G$ T . Thus, the substitution matrix MSYM3 is
defined as follows

MSYM3 ¼

n c a b

c n b a
a b n c

b a c n

0BBB@
1CCCA

where n ¼ 1� ðaþ bþ cÞ. The four eigenvalues of matrix MSYM3 are

k1 ¼ 1� 2ðaþ bÞ; k2 ¼ 1� 2ðaþ cÞ; k3 ¼ 1� 2ðbþ cÞ; k4 ¼ 1f g
ð6:1Þ

and their associated eigenvectors are

v1 ¼ �1;�1;1;1f g; v2 ¼ 1;�1;�1;1f g;f
v3 ¼ �1;1;�1;1f g; v4 ¼ 1;1;1;1f gg:

After some algebraic manipulation of Eq. (2.14), we obtain the se-
quence content vector PðxÞ in each nucleotide A;C;G and T as a func-
tion of a variable x representing either evolution time x ¼ t or
sequence length x ¼ l. Then, the variable x0 represents the initial con-
dition of x which is x0 ¼ 0 for evolution time t and x0 ¼ n0 for se-
quence length l. Finally, a function hðxÞ is introduced which is equal
to hðxÞ ¼ ert for evolution time t and to hðxÞ ¼ hðlÞ ¼ s�1

s�n0
l

for sequence

length l. Thus, with the following convention ðx; x0;hðxÞÞ ¼ ðt;0; ertÞ
for an evolution time process and ðx; x0; hðxÞÞ ¼ ðl; n0;hðlÞÞ for a se-
quence length process, the sequence content vector reads

PðxÞ ¼ 1
r

rA

rC

rG

rT

0BBBB@
1CCCCAþ 1

4
1� sþ shðxÞð Þ

f1ðxÞ þ f2ðxÞ þ f3ðxÞ
f1ðxÞ � f2ðxÞ � f3ðxÞ
�f1ðxÞ � f2ðxÞ þ f3ðxÞ
�f1ðxÞ þ f2ðxÞ � f3ðxÞ

0BBBB@
1CCCCA
ð6:2Þ
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Fig. 1. Statistical features of the genome length (Mb) and GC content of complete
genomes of four taxonomic groups Chlamydiae, Crenarchaeota, Spirochaetes and
Thermotogae. The boxplots show for each taxonomic group the distribution of the
genome length (top boxplot) and GC content (bottom boxplot). The horizontal bar
shows the median, the box margins represent the 25th and 75th percentiles, the
whiskers indicate data within 2 times the interquartile range and the circles are
outliers.
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where r ¼ rA þ rC þ rG þ rT ; s ¼ n0
nmax

and, for all k ¼ 1;2;3,

fkðxÞ¼ pkðx0Þ�
rk

r

� �
hðxÞ�

1�kkþr
r

þ 1
1�s

� �
rk

r

� � 1�kk

1�kkþ r

� �
hðxÞ�

1�kkþr
r

2F1ðk;1Þ� 2F1ðk;hðxÞÞ
	 


with, for y ¼ 1; hðxÞ; 2F1ðk; yÞ ¼H2F1 1;1þ 1�kk
r ;2þ 1�kk

r ; s
s�1 y

h i
; kk

defined in (6.1), and r1 ¼ rA þ rC � rG � rT , r2 ¼ rA � rC � rG þ rT ,
r3 ¼ rA � rC þ rG � rT ; p1ðx0Þ ¼ pAðx0Þ þ pCðx0Þ � pGðx0Þ � pTðx0Þ,
p2ðx0Þ¼pAðx0Þ�pCðx0Þ�pGðx0ÞþpTðx0Þ and p3ðx0Þ¼pAðx0Þ�pCðx0Þþ
pGðx0Þ�pTðx0Þ.

6.2. LIIS-HKY analytical formula

The LIIS-HKY model gives the expression of nucleotide sequence
content vector PðtÞ ¼ Pðt; 0; Pð0ÞÞ by deriving Eq. (2.14) with the
classical substitution matrix MHKY [9]. This matrix MHKY is defined
by six formal parameters: the transition and transversion rates, a
and b, respectively, and the equilibrium nucleotide frequencies
pA;pC ;pG and pT ,

MHKY ¼

nA bpA apA bpA

bpC nC bpC apC

apG bpG nG bpG

bpT apT bpT nT

0BBB@
1CCCA

where for all j in fA;C;G; Tg; nj ¼ 1� Ri–jMHKY ½i; j� such that matrix
MHKY is stochastic in column. This matrix MHKY defines one of the
most general substitution models whose equilibrium distribution
differs from 1=4 for all nucleotides. Let us denote by pR ¼ pA þ pG

and pY ¼ pC þ pT the equilibrium frequencies for purine (A;G) and
pyrimidine (C; T), the four eigenvalues of matrix MHKY are

k1 ¼ 1� b; k2 ¼ 1� apR � bpY ; k3 ¼ 1� apY � bpR; k4 ¼ 1f g
ð6:3Þ

and their associated eigenvectors are

v1 ¼ �pYpA

pRpT
;
pC

pT
;�pYpG

pRpT
;1


 �
; v2 ¼ �1;0;1;0f g; v3 ¼ 0;�1; 0;1f g;



v4 ¼

pA

pT
;
pC

pT
;
pG

pT
;1


 ��
:

After some algebraic manipulation of Eq. (2.14), we obtain the se-
quence content vector PðxÞ in each nucleotide A;C;G and T with
the following convention ðx; x0; hðxÞÞ ¼ t;0; hðtÞ ¼ ertð Þ for an evolu-

tion time process and ðx; x0; hðxÞÞ ¼ l; n0;hðlÞ ¼ s�1
s�n0

l

� �
for a sequence

length process then,

PðxÞ ¼ 1
r

rA

rC

rG

rT

0BBB@
1CCCAþ 1� sþ shðxÞð Þ

�pAg1ðxÞ�g2ðxÞ
pR

pC g1ðxÞ�g3ðxÞ
pY

�pGg1ðxÞþg2ðxÞ
pR

pT g1ðxÞþg3ðxÞ
pY

0BBBBBB@

1CCCCCCA

26666664

37777775 ð6:4Þ

where r ¼ rA þ rC þ rG þ rT ; s ¼ n0
nmax

and, for all k ¼ 1;2;3,

gkðxÞ ¼ Ck � Dkrð ÞhðxÞ�
1�kkþr

r

� Ck 1� kkð Þ
1� sð Þ 1� kk þ rð Þ hðxÞ�

1�kkþr
r

2F1ðk;1Þ � 2F1ðk; hðxÞÞ
	 


ð6:5Þ

with for y ¼ 1; hðxÞ; 2F1ðk; yÞ ¼H2F1 1;1þ 1�kk
r ;2þ 1�kk

r ; s
s�1 y

h i
; kk

defined in (6.3), and C1 ¼ pY rR � pRrY , C2 ¼ pGrA � pArG, C3 ¼
pT rC � pCrT , D1 ¼ pY pRðx0Þ � pRpY ðx0Þ, D2 ¼ pGpAðx0Þ � pApGðx0Þ,
D3 ¼ pT pCðx0Þ �pCpTðx0Þ, rR ¼ rA þ rG; rY ¼ rC þ rT ; pRðx0Þ ¼ pAðx0Þþ
pGðx0Þ and pYðx0Þ ¼ pCðx0Þ þ pTðx0Þ.

The LIIS-HKY model (Eq. 6.4) as a function of the sequence
length (with x ¼ l) is used in Section 7 for modelling the GC content
in complete genomes of four prokaryotic taxonomic groups.
7. A statistical evaluation of the LIIS model with a GC content
analysis in complete genomes

The LIIS model is a generalization of the IDIS model [14] where
an additional formal parameter nmax modulates the insertion pro-
cess according to the sequence length. Indeed, Proposition 3 proves
that the IDIS model is a particular case of the LIIS model when the
maximum sequence length nmax tends to infinity. In this section,
we will show that this theoretical generalization has direct conse-
quences in biological applications. The IDIS model was applied to
the analysis of the GC content in bacterial genomes [14]. The anal-
ysis of the GC content has been a matter of debate for several years
as no mathematical model has been proposed to describe the rela-
tionship observed between the GC content, the genome length
[22,27,3,37,23,21,28] and the mutation events [8,29,37] in bacte-
rial genomes. The IDIS model outperforms the most recent model-
ling of GC content which is based on an empirical linear
relationship [37,23,21] in bacterial genomes (see the coefficients
R2 in Fig. 4 in [14]). From a theoretical point of view, this result
was explained, in particular, by the two following facts: (i) the lin-
ear model is a particular case of the non-linear IDIS model with one
more degree of freedom (the parameter c ¼ �1 of the IDIS model
being associated to the linear case); and (ii) the IDIS model relies
on evolution assumptions for the processes of substitution, inser-
tion and deletion, in contrast to an empirical relationship. A statis-
tical analysis of the GC content in complete genomes of four
prokaryotic taxonomic groups, namely Chlamydiae, Crenarchaeota,
Spirochaetes and Thermotogae, will show the expected improve-
ment from the theory of the LIIS model compared to the IDIS
model.
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Fig. 2. Best fit curves pGCðlÞminimizing the error RSS (Residual Sum of Squares) for the IDIS model (left panel) and the novel LIIS model (right panel) of complete genomes of
four taxonomic groups Chlamydiae, Crenarchaeota, Spirochaetes and Thermotogae. In each plot, the x-axis represents the genome length l (Mb) and the y-axis, the GC content
pGCðlÞ. For each taxonomic group, the left panel shows the best fit curve pGCðlÞ obtained with the IDIS-HKY model and its associated error RSS and the right panel shows the
best fit curves pGCðlÞ obtained with the LIIS-HKY model and its associated error decrease (%) in comparison with the IDIS-HKY model.
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7.1. GC content formula

The analysis of GC content in complete genomes leads to the fol-
lowing assumptions with the LIIS-HKY model. As the DNA double
helix is antiparallel and complementary (A bonds T and C bonds
G), the number of C is equal to the number of G, and similarly for
A and T. Thus, the initial sequence content, the equilibrium distri-
bution and the nucleotide insertion rates satisfy the following
conditions

pCðn0Þ ¼ pGðn0Þ; pAðn0Þ ¼ pTðn0Þ; pRðn0Þ ¼ pYðn0Þ ¼ 1
2

pC ¼ pG; pA ¼ pT ; pR ¼ pY ¼ 1
2

rC ¼ rG; rA ¼ rT ; rR ¼ rY ¼ r
2 :

8><>: ð7:1Þ

The GC content pGCðlÞ ¼ pGðlÞ þ pCðlÞ, i.e. the sum of the sequence
content in nucleotides C and G, is after some algebraic manipulation
of Eq. (6.4) with x ¼ l, equal to

pGCðlÞ ¼ 2
rC

r
þ 2 1� sþ shðlÞð Þ pCðn0Þ �

rC

r

� �
hðlÞ� 1þaþb

2rð Þh
�

pC � rC
r

1� sð Þ 1þ 2r
aþb

� � hðlÞ� 1þaþb
2rð Þ

2F1ð2;1Þ � 2F1 2;hðlÞð Þ
� �i

ð7:2Þ

where r ¼ 2ðrA þ rCÞ; s ¼ n0
nmax

; hðlÞ ¼ s�1
s�n0

l

and, for x ¼ 1;hðlÞ;
2F1ð2; xÞ ¼ H2F1 1;1þ 1�k2

r ;2þ 1�k2
r ; s

s�1 x
� �

with k2 ¼ 1� aþb
2 .

Proof. From Eq. (6.4) with x ¼ l,

pGCðlÞ ¼ pGðlÞ þ pCðlÞ

¼ rC þ rG

r
þ 2

r
1� sþ shðlÞð Þ pCg1ðlÞ � g3ðlÞ � pGg1ðlÞ þ g2ðlÞ½ �

¼ 2rC

r
þ 2

r
1� sþ shðlÞð Þ pCg1ðlÞ � g3ðlÞ � pCg1ðlÞ þ g2ðlÞ½ �

¼ 2rC

r
þ 2

r
1� sþ shðlÞð Þ g2ðlÞ � g3ðlÞ½ �

¼ 2
r

rC þ 1� sþ shðlÞð Þ g2ðlÞ � g3ðlÞð Þ½ �

¼ 2
r

rC þ 2 1� sþ shðlÞð Þg2ðlÞ½ �:

Indeed, from Eq. (6.5) and Condition (7.1), the following relations
between the terms in k ¼ 2 and k ¼ 3 are obtained:
k2 ¼ k3;C3 ¼ pT rC � pCrT ¼ pArC � pCrA ¼ �C2 and D3 ¼ �D2 lead
to g3ðlÞ ¼ �g2ðlÞ. From Condition (7.1), the following relations are
deduced: pAðn0Þ ¼ 1

2� pCðn0Þ;pA ¼ 1
2� pC and rA ¼ r

2� rC . They lead
to C2 ¼ 1

2 pCr � rCð Þ and D2 ¼ 1
2 pC � pCðn0Þð Þ and finally to

C2 � D2r ¼ 1
2 rpCðn0Þ � rCð Þ which allows the analytical Eq. (7.2) to

be retrieved. h
7.2. GC content estimation

Complete genomes of four prokaryotic taxonomic groups,
namely Chlamydiae (17 genomes), Crenarchaeota (34 genomes),
Spirochaetes (34 genomes) and Thermotogae (15 genomes), are
chosen as an example in order to show the improvement of the LIIS
model (precisely, LIIS-HKY) compared to the previous IDIS model
(precisely, IDIS-HKY; [14]) for modelling the GC content according
to the genome length. The genome length (Mb) and GC content of
complete genomes of each taxonomic group are collected from the
NCBI site (www.ncbi.nlm.nih.gov/genomes/lproks.cgi, January
2013). Figure 1 gives the main statistical features of their genome
length (Mb) and GC content. In order to be ‘‘general’’ in the statis-
tical evaluation of the LIIS model, we have chosen taxonomic sam-
ples with a large variability of observation parameters concerning
simultaneously the genome number, from 15 genomes for the
Thermotogae to 34 genomes for the Crenarchaeota and the Spiro-
chaetes (i.e. a variation of 127%), the minimum genome length
n0, from 0:34 Mb for the Spirochaetes to 1:81 Mb for the Thermot-
ogae (i.e. a variation of 432%), the maximum genome length nmax,
from 2:83 Mb for the Crenarchaeota to 5:96 Mb for the Chlamydiae
(i.e. a variation of 111%), the minimum CG content, from 25:8% for
the Spirochaetes to 34:7% for the Chlamydiae (i.e. a variation of
34%), and the maximum CG content, from 46:9% for the Thermot-
ogae to 65:3% for the Chlamydiae (i.e. a variation of 39%).

For each taxonomic group, we set the minimum genome length
n0 to the minimum observed among the genomes of each group. In
order to obtain the best estimation of parameters of the formula
pGCðlÞ (Eq. (7.2)) for the two models LIIS and IDIS, all parameters
are scanned as follows: the initial content pCðn0Þ in nucleotide C,
from 0:1 to 0:3 by step 0:01 (i.e. the GC content pGCðn0Þ varies from
0:2 to 0:6 and thus includes the GC content interval observed in the
data, Fig. 1), the equilibrium frequency pC of C, from 0:00 to 0:5 by
step 0:05, the ratio aþb

r , from 0:01 to 4 by step 0:01, the ratio rC
r , from

0 to 0:5 by step 0:05 and, for the LIIS model only, the maximal gen-
ome length nmax varies from the observed maximum length (Mb) of
each taxonomic group to 10 Mb by step 0:02 Mb. The IDIS and LIIS
models are evaluated with the classical statistical parameter RSS
(Residual Sum of Squares). The best fit curves are plotted in
Figure 2.

As expected by the theory (see Introduction in Section 7), the
LIIS model has RSS values significantly smaller than the IDIS model
with the four taxonomic groups, in particular an error decrease up
to 43% with Chlamydiae. Furthermore, the best fit curves pGCðlÞ in
the LIIS and IDIS models may be totally different with a change of
concavity/convexity, in particular with the Chlamydiae and the
Crenarchaeota. Otherwise, the application of the LIIS model for
GC content analysis in bacterial genomes may be improved in fu-
ture by incorporating some additional biological factors such as
the effect of selection force, e.g. the variation of base composition
at synonymous sites since bacterial genomes have high gene con-
tent [24].
8. Conclusion

We have developed a new molecular evolution model based on
Limited Insertion Independent of Substitution (LIIS model). This
LIIS model is more general than the IDIS model [13,14], both from
a theoretical point of view as the IDIS model is a particular case of
the LIIS model when the maximum sequence length nmax tends to
infinity, and from a practical point of view for the GC content anal-
ysis in complete genomes of four prokaryotic taxonomic groups.
This research work is a theoretical contribution to the very few
classes of mathematical models of gene evolution based on substi-
tution and insertion. To our knowledge, there is no mathematical
molecular evolution model including a limited insertion process.
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