Contents lists available at ScienceDirect

Computational Biology and Chemistry

CrossMark

Computational Biology and Chemistry

journal homepage: www.elsevier.com/locate/compbiolchem

Circular code motifs near the ribosome decoding center

Karim El Soufi, Christian J. Michel*

Theoretical Bioinformatics, ICube, University of Strasbourg, CNRS, 300 Boulevard Sébastien Brant, 67400 Illkirch, France

ARTICLE INFO

Article history: Received 12 June 2015 Accepted 13 July 2015 Available online 14 September 2015

Keywords: Circular code motif Ribosomal RNA Transfer RNA Translation code

ABSTRACT

A maximal C^3 self-complementary trinucleotide circular code X is identified in genes of bacteria, eukaryotes, plasmids and viruses (Michel, 2015; Arquès and Michel, 1996). A translation (framing) code based on the circular code was proposed in Michel (2012) with the identification of several X circular code motifs (X motifs shortly) in both ribosomal RNAs (rRNAs) and their decoding center, and transfer RNAs (tRNAs). We extended these results in two ways. First, three universal X motifs were determined in the ribosome decoding center: the X motif m_{AA} containing the conserved nucleotides A1492 and A1493, the X motif $m_{\rm G}$ containing the conserved nucleotide G530 and the X motif m with unknown biological function (El Soufi and Michel, 2014). Secondly, statistical analysis of X motifs of greatest lengths performed on different and large tRNA populations according to taxonomy, tRNA length and tRNA score showed that these X motifs have occurrence probabilities in the 5' and/or 3' regions of 16 isoaccepting tRNAs of prokaryotes and eukaryotes greater than the random case (Michel, 2013). We continue here the previous works with the identification of X motifs in rRNAs of prokaryotes and eukaryotes near the ribosome decoding center. Seven X motifs PrRNAXm conserved in 16S rRNAs of prokaryotes P and four X motifs ErRNAXm conserved in 18S rRNAs of eukaryotes E are identified near the ribosome decoding center. Furthermore, four very large X motifs of length greater than or equal to 20 nucleotides, 14 large X motifs of length between 16 and 19 nucleotides and several X motifs of length greater or equal to 9 nucleotides are found in tRNAs of prokaryotes. Some properties of these X motifs in tRNAs are described. These new results strengthen the concept of a translation code based on the circular code (Michel, 2012).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The ribosome is a complex ribonucleoprotein particle responsible for the synthesis of the cell protein by translating messenger RNA (mRNA). Ribosomes are composed of two subunits, a large subunit and a small subunit. Each subunit is formed by ribosomal RNAs (rRNAs) and proteins. A ribosome contains three transfer RNA (tRNA) binding sites: A-site (aminoacyl), P-site (peptidyl) and E-site (exit). During translation, the aminoacyl tRNA binds to the Asite where the decoding center containing the universally conserved dinucleotide AA (A1492 and A1493) distinguishes cognate from non-cognate tRNAs by anticodon-codon interactions (Wilson, 2014). The transfer of the amino acid from the P-site to the A-site results in the peptide-bond forming between the carboxyl group at the P-site and the newly arrived amino acid at the A-site. As the ribosome progresses by three nucleotides, the peptidyl tRNA moves from the A-site to the P-site. Finally the unloaded tRNA moves from the P-site to the E-site.

* Corresponding author.

E-mail addresses: kelsoufi@unistra.fr (K. El Soufi), c.michel@unistra.fr (C.J. Michel).

http://dx.doi.org/10.1016/j.compbiolchem.2015.07.015 1476-9271/© 2015 Elsevier Ltd. All rights reserved.

In 1996, a statistical analysis of occurrence frequencies of the 64 trinucleotides {AAA, ..., TTT} in the three frames 0, 1 and 2 of genes of both prokaryotes and eukaryotes showed that the trinucleotides are not uniformly distributed in these three frames (Arquès and Michel, 1996). By convention here, the frame 0 is the reading frame in a gene and the frames 1 and 2 are the reading frame 0 shifted by one and two nucleotides in the 5'-3' direction, respectively. By excluding the four periodic permuted trinucleotides {AAA, CCC, GGG, TTT} and by assigning each trinucleotide to a preferential frame (frame of its highest occurrence frequency), three subsets $X = X_0$, X_1 and X_2 of 20 trinucleotides are found in the frames 0, 1 and 2, respectively, simultaneously of two large gene populations (protein coding regions): eukaryotes (26,757 sequences, 11,397,678 trinucleotides) and prokaryotes (13,686 sequences, 4709,758 trinucleotides) (Arguès and Michel, 1996). This set X contains the 20 following trinucleotides:

 $X = \{AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC\}.$ (1)

The two sets X_1 and X_2 , of 20 trinucleotides each, in the shifted frames 1 and 2 of genes can be deduced from *X* by the circular permutation map (see below). These three trinucleotide sets

present several strong mathematical properties, particularly the fact that X is a maximal C^3 self-complementary trinucleotide circular code (Arquès and Michel, 1996). A trinucleotide circular code has the fundamental property to always retrieve the reading frame in any position of any sequence generated with the circular code. In particular, initiation and stop trinucleotides as well as any frame signals are not necessary to define the reading frame. Indeed, a window of 12 nucleotide length positioned anywhere in a sequence generated with the circular code X always retrieves the reading frame (Tables 2 and 3 in Michel, 2012).

A translation (framing) code based on the circular code was proposed in Michel (2012) with the identification of X circular code motifs (X motifs shortly) in the bacterial ribosomal RNA of Thermus thermophilus, in particular in the ribosome decoding center which recognizes the codon-anticodon helix in A-tRNA, and its tRNA of phenylalanine. A 3D visualization of X motifs in the ribosome shows several spatial configurations involving X motifs of mRNA, tRNA and rRNA. These results were extended in two ways. Firstly, three universal X motifs were identified in the ribosome decoding center of all the studied rRNAs from different kingdoms: bacteria Escherichia coli and T. thermophilus, archaea Pyrococcus furiosus, nuclear eukaryotes Saccharomyces cerevisiae, Triticum aestivum and Homo sapiens, and chloroplast Spinacia oleracea. These three X motifs are m_{AA} containing the conserved nucleotides A1492 and A1493, $m_{\rm G}$ containing the conserved nucleotide G530 and m whose biological function is unknown (El Soufi and Michel, 2014). Secondly, a statistical analysis of X motifs of greatest lengths performed on different and large tRNA populations according to the taxonomy, tRNA length and tRNA score showed that these X motifs have occurrence probabilities in the 5' and/or 3' regions of 16 isoaccepting tRNAs of prokaryotes and eukaryotes greater than the random case (Michel, 2013). By developing a search algorithm of X motifs in a DNA global multiple sequence alignment, we extend here the previous works to the identification of X motifs in rRNAs of prokaryotes and eukaryotes near the ribosome decoding center. Furthermore, in contrast to the statistical analysis of the distribution of X motifs of greatest lengths (Michel, 2013), a detailed analysis of X motifs is performed in the 20 isoaccepting tRNAs of bacteria. Several properties of X motifs are described according to (i) their type; (ii) their length: very large with a length greater than 20 nucleotides, large with a length between 16 and 19 nucleotides, otherwise with a length between 9 and 15 nucleotides (X motifs of lengths equal to 9 nucleotides retrieve the reading frame with a probability of 99.9%, Table 3 and Fig. 4 in Michel, 2012); (iii) their position in the tRNAs: 5' regions, anticodon regions, 3' regions; and (iv) their relations: X motifs shifted in frame by +1 or +2 nucleotides from other X motifs or the anticodons of tRNAs.

2. Method

2.1. Recall

The definitions of code, trinucleotide code, trinucleotide circular code, self-complementary trinucleotide circular code, C^3 trinucleotide circular code and C^3 self-complementary trinucleotide circular code related to the *X* motifs, i.e. motifs from the circular code *X* (Eq. (1)), are given in Michel (2012, 2013) and El Soufi and Michel (2014).

The trinucleotide set X (Eq. (1)) coding the reading frames in eukaryotic and prokaryotic genes is a maximal (20 trinucleotides) C^3 self-complementary trinucleotide circular code with a window length equal to 12 nucleotides for retrieving the reading frame. The fundamental property of a circular code is the ability to retrieve the reading (original or constructed) frame of any sequence generated with this circular code. A circular code is a set of words over an

alphabet such that any sequence written on a circle (the next letter after the last letter of the sequence being the first letter) has a unique decomposition (factorization) into words of the circular code (Fig. 1 in Michel, 2012; for a graphical representation of the circular code definition and Fig. 2 in Michel, 2012; for an example). The reading frame in a sequence (a gene) is retrieved after the reading of a certain number of letters (nucleotides), called the window of the circular code. The length of this window for retrieving the reading frame is the letter length of the longest ambiguous words which can be read in at least two frames, plus one letter (Fig. 3 in Michel, 2012; for an example). For the circular code *X*, this window needs a length of 12 nucleotides as the two longest ambiguous words GGTAATTACCA and GGTAATTACCT of *X* have 11 nucleotides (Tables 2 and 3 in Michel, 2012).

In this paper, we study X circular code motifs (X motifs shortly) near the ribosome decoding center. It is important to remind the reader that there are two concepts: (i) the circular code X, which is a set of 20 trinucleotides (Eq. (1)); and (ii) X motifs, which are motifs (words) obtained with the circular code X. We give here a few examples of X motifs: AAC,AAT (a concatenation of the 1st and 2nd trinucleotides of X, the commas showing the adopted decomposition), TTC,TAC,AAC (a concatenation of the 20th, 19th and 1st trinucleotides of X), AG,AAC,AAT (a concatenation of the suffix AG of the 6th or 11th trinucleotides of X, and the 1st and 2nd trinucleotides of X), and the 1st and 2nd trinucleotides of X), and the 1st and 2nd trinucleotides of X, the 1st and 2nd trinucleotides of X, and the prefix AC of the 3rd trinucleotide of X), etc. The motifs, for example, AAC,AAT,AAG, CA,AAC,AAT and AAC,AAT,AG are not X motifs.

2.2. Search algorithm of X motifs in a DNA global multiple sequence alignment

We present here a search algorithm of *X* motifs of lengths greater than a given number of nucleotides in a DNA global multiple sequence alignment (global MSA with the program ClustalW2). It will identify common *X* motifs in multiple aligned RNA sequences. The algorithm is presented with DNA sequences, i.e. on the 4-letter alphabet $A_4 = \{A, C, G, T\}$, its extension on RNA sequences, i.e. on the 4-letter alphabet $\{A, C, G, U\}$, being trivial.

Let a trinucleotide *t* of the circular code *X* defined in Eq. (1) be the three letters $t = l_1 l_2 l_3 \in A_4^3 = \{AAA, \dots, TTT\}$. Let $Pref_{let}(X)$ be the set containing the letters $l_1 \in A_4$ of *X* and $Pref_{dilet}(X)$ be the set containing the diletters $l_1 l_2 \in A_4^2 = \{AA, \dots, TT\}$ of *X*. Then, by inspection of *X*, we have:

$$Pref_{let}(X) = \{A, C, G, T\} = A_4,$$
 (2)

$$Pref_{dilet}(X) = \{AA, AC, AT, CA, CT, GA, GC, GG, GT, TA, TT\}.$$
 (3)

Remark 1. $Card(Pref_{let}(X)) = 4$ and $Card(Pref_{dilet}(X)) = 11$ (among 16 dinucleotides).

The algorithm uses the following classical notions of language theory. Let *x* be a word (sequence) on A_4 of length |x|. x[i] denotes the letter at index *i* of *x* and x[i.j] denotes the factor of *x* defined by x[i]x[i+1].x[j] of length j - i + 1.

The function Xmotif searches an *X* motif at a given position startX (input parameter in integer) in a DNA sequence seq of length $|seq| \text{ on } A_4 \text{ or } A_4 \cup \{-\}$ (an aligned sequence with gaps) and returns its end position endX (output parameter in integer).

The function Search_Xmotif_seq searches all the *X* motifs in a DNA sequence seq (input parameter in string) of length |seq| on A_4 or $A_4 \cup \{-\}$ which are greater or equal to a minimum number of nucleotides in the *X* motif, named lgMinX (input parameter in integer), and returns a list listXMotif (output parameter) of *X*

```
Xmotif[startX]
     endX = startX
1.
2.
     iX = 1 // index on X
3.
     testX = true
4.
     while testX
5.
     {
8.
       if {seq[endX] \bigcap A<sub>4</sub>} \neq {} then
9.
          if iX = 1[3] then // Case 1 modulo 3: Preflet
6.
7.
          {
8.
            if endX \leq |seq| and {seq[endX] \bigcap Pref<sub>let</sub>} \neq {} then
9.
            {
10.
               iX++
11.
               endX++
12.
            }
13.
            else testX = false
14.
15.
          if iX = 2[3] then // Case 2 modulo 3: Pref<sub>dilet</sub>
16.
          {
17.
            if endX \leq |seq| and {seq[endX-1..endX] \cap Pref<sub>dilet</sub>} \neq {} then
18.
            {
19.
               iX++
20.
               endX++
21.
            1
22.
            else testX = false
23.
          }
24.
          if iX = 0[3] then // Case 0 modulo 3: X
25.
          {
            if endX \leq |seq| and {seq[endX-2..endX] \cap X} \neq {} then
26.
27.
            {
28.
               iX++
29.
               endX++
30.
            }
31.
            else testX = false
32.
          }
33.
       }
33. }
34. return endX--
```

motifs of lengths greater or equal to lgMinX, otherwise an empty list. Each *X* motif is also a list containing the series of nucleotides of the *X* motif, its length and its start and end positions in the DNA sequence seq.

Let multipleSeqAlign (input parameter) be a list of cardinal card [multipleSeqAlign] aligned sequences (string) of length |seqAlign|. Let seqCommon be the common sequence (string) of length |seqAlign| containing the nucleotide which is identical (or almost

```
Search_Xmotif_seq[seq,lgMinX]
```

```
1. listXMotif ← {}
2. for start ← 1 to |seq| step +1 do
3. {
4. end ← Xmotif[start] // start: start position of Xmotif in seq
5. lg ← end-start+1
6. if lg ≥ lgMinX then listXMotif ← {seq[start..end],lg,start,end}
7. }
8. return listXMotif
```

identical) at the same position in all sequences of MSA. The Algorithm_Search_Xmotif_seqCommon constructs the common sequence seqCommon containing the universally conserved nucleotides in MSA otherwise a character different from A_4 (here the wild character "*") and then applies the function

formats and high-performance 3D rendering with no hardware requirements. Several scripts were written in Jmol for each PDB entry to visualize the *X* motifs in the messenger, transfer and ribosomal RNAs. They are not detailed here.

```
Algorithm_Search_Xmotif_seqCommon[multipleSeqAlign,lgMinX]
1. for i ← 1 to |seqAlign| step +1 do
2. {
3. seqCommon[i] ← "*"
4. letter ← {}
5. for j ← 1 to card[multipleSeqAlign] step +1 do
6. letter ← letter U multipleSeqAlign[i,j]
7. if card[letter] = 1 then seqCommon[i] ← multipleSeqAlign[i,j]
8. }
9. return Search_Xmotif_seq[seqCommon,lgMinX]
```

Search_Xmotif_seq to the constructed seqCommon for identifying the common *X* motifs in MSA.

An *X* motif returned by the Algorithm_Search_Xmotif_seqCommon beginning at position *b* and ending at position *e* is characterized by either the integer interval [*b..e*] or the triplet (*b*, *e*, *l*) where the nucleotide length l = e - b + 1.

2.3. Coverage of X motifs in a DNA region

Let a set of m X motifs occurring in the position set $P = \{[b_1..e_1], \ldots, [b_m..e_m]\}$ in a DNA region R = [a..b], e.g. the 5' or 3' region in a tRNA (extension on {A, C, G, U}). Note that the intersection of intervals $[b_i..e_i]$ are not necessarily empty. Then, Interval(P) = { $[\min_1..\max_1], \ldots, [\min_n..\max_n]$ } is the union of the ranges b_1 to $e_1, ..., b_m$ to e_m . Note that the intersection of intervals $[\min_i..\max_i]$ are always empty. Therefore, Coverage(X,R) giving the probability of sites of the DNA region R occupied by X motifs is simply defined by:

Coverage(X, R) =
$$\frac{1}{b-a+1} \sum_{i=1}^{n} (\max_{i} - \min_{i} + 1).$$
 (4)

2.4. Crystallographic data

The Algorithm_Search_Xmotif_seqCommon is applied to global multiple sequence alignment of rRNAs of different organisms whose crystallographic structures are known and available in the Protein Data Bank (PDB, www.rcsb.org/pdb/home/home.do, February 2015). The selected PDB entries have necessarily a bacterial 16S rRNA or a eukaryotic 18S rRNA, and if possible in addition an mRNA and/or tRNA to visualize the spatial interaction of their *X* motifs. PDB entries containing synthetic chains were excluded. The studied PDB crystallographic structures are for bacteria: *E. coli* (Brilot et al., 2013) and *T. thermophilus* (Jenner et al., 2010); for archaea: *P. furiosus* (Armache et al., 2010a), *T. aestivum* (Armache et al., 2010a,b; Gogala et al., 2014) and *H. sapiens* (Anger et al., 2013). Table 1 summarizes the main features of the crystallographic structures studied.

2.5. Scripts in Jmol language

Jmol is an open-source Java viewer for chemical structures in 3D (http://www.jmol.org/). It allows the reading of a variety of file

3. Results

3.1. Identification of conserved X circular code motifs in rRNAs near the ribosome decoding center

3.1.1. Identification of seven conserved X circular code motifs PrRNAXm in 16S rRNAs of prokaryotes P near the ribosome decoding center

By using the Algorithm_Search_Xmotif_seqCommon (Section 2.2) with the global multiple sequence alignment ClustalW2, seven *X* circular code motifs *PrRNAXm* are identified which are conserved in the prokaryotic 16S rRNAs of bacteria *E. coli* (3J5T) and *T. thermophilus* (3I8G), and archaea *P. furiosus* (3J20) (Table 2):

- (i) $PrRNAXm_1(E. coli, 537, 545, 9) = PrRNAXm_1(T. thermophilus, 517, 525, 9) = G,GAG,GGY,GC of nine nucleotides starts with the nucleotide G suffix of CAG, CTG, GAG <math>\in X$, has two trinucleotides GAG, GGY $\in X$ where Y = T in *E. coli* and Y = C in *T. thermophilus*, and ends with the dinucleotide GC prefix of GCC $\in X$. The large X motif $PrRNAXm_1(P. furiosus, 480, 497, 18) = GC,GGT,AAT,ACC,GGC,GGC,C of 18 nucleotides starts with the dinucleotide GC suffix of GGC <math>\in X$, has five trinucleotides GGT, AAT, ACC, GGC, GGC $\in X$ and ends with the nucleotide C prefix of CAG, CTC, CTG $\in X$. $PrRNAXm_1$ of *E. coli* and *T. thermophilus* are partial suffixes of $PrRNAXm_1$ of *P. furiosus*.
- (ii) $PrRNAXm_2(E. coli, 688, 697, 10)$, $PrRNAXm_2(T. thermophilus, 668, 677, 10)$ and $PrRNAXm_2(P. furiosus, 643, 654, 12)$ have the common X motif GGT,GAA,AT of eight nucleotides with GGT, GAA \in X. $PrRNAXm_2$ of E. coli and T. thermophilus start with the dinucleotide GC suffix of GGC \in X and end with the dinucleotide AT prefix of ATC, ATT \in X. $PrRNAXm_2$ of P. furiosus starts with the nucleotide G suffix of CAG, CTG, GAG \in X and ends with the dinucleotide CT prefix of CTC. CTG \in X.
- (iii) $PrRNAXm_3(E. coli, 714, 736, 23)$ and $PrRNAXm_3(T. thermophilus, 694, 713, 20)$ have the large common X motif G,AAY,R₁CC, GR₂T,GGC,GAA,GGC of 19 nucleotides starting with the nucleotide G suffix of CAG, CTG, GAG \in X followed by six trinucleotides AAY, R₁CC, GR₂T, GGC, GAA, GGC \in X where Y = T, R₁ = A and R₂ = G in *E. coli* while Y = C, R₁ = G and R₂ = A in *T. thermophilus. PrRNAXm*₃ of *E. coli* ends with the nucleotide C prefix of CAG, CTC, CTG \in X whereas *PrRNAXm*₃ of *T. thermophilus* ends with the nucleotide A prefix of

AAC, AAT, ACC, ATC, ATT $\in X$. The X motif $PrRNAXm_3(P. fur$ iosus, 676, 690, 15) = GT, GGC, GAA, GGC, GCC, C of 15 nucleotides $is a conserved suffix of <math>PrRNAXm_3$ of *E. coli* (14 identical letters among 15) starting with the dinucleotide GT suffix of GGT in $PrRNAXm_3$ of *E. coli*.

- (iv) The large X motif $PrRNAXm_4(E. coli, 789, 807, 19) = TA, GAT, ACC, CTG, GTA, GTC, CA of 19 nucleotides starts with the dinucleotide TA suffix of GTA <math>\in$ X, has five trinucleotides GAT, ACC, CTG, GTA, GTC \in X and ends with the dinucleotide CA prefix of CAG \in X. $PrRNAXm_4(T. thermophilus, 769, 777, 9) = PrRNAXm_4(P. furiosus, 743, 751, 9) = TA, GAT, ACC, C of nine nucleotides is a prefix of CTG in <math>PrRNAXm_4$ of *E. coli* ending with the nucleotide C prefix of CTG in $PrRNAXm_4$ of *E. coli*.
- (v) $PrRNAXm_5(E. coli, 1186, 1197, 12)$, $PrRNAXm_5(T. thermophilus, 1164, 1174, 11)$ and $PrRNAXm_5(P. furiosus, 1146, 1156, 11)$ have the common X motif G,GRY₁,GAC,GKY₂,W of 11 nucleotides starting with the nucleotide G suffix of CAG, CTG, GAG \in X followed by three trinucleotides GRY₁, GAC, GKY₂ \in X where R = A, Y₁ = T, K = T, Y₂ = C and W = A in *E. coli*, R = A, Y₁ = C, K = T, Y₂ = C and W = A in *P. furiosus*. *PrRNAXm*₅ of *E. coli* ends with the dinucleotide AA prefix of AAC, AAT \in X, *PrRNAXm*₅ of *T. thermophilus* ends with the nucleotide T prefix of TAC, TTC \in X and *PrRNAXm*₅ of *P. furiosus* ends with the nucleotide A prefix of AAC, AAT, ACC, ATC, ATT \in X.
- (vi) The large common X motif $PrRNAXm_6(E. coli, 1211, 1228, 18) = PrRNAXm_6(T. thermophilus, 1189, 1206, 18) = T,TAC,GRC, CWG,GGC,KAC,AC of 18 nucleotides starts with the nucleotide T suffix of AAT, ATT, GAT, GGT, GTT <math>\in$ X, has five trinucleotides TAC, GRC, CWG, GGC, KAC \in X where R = A, W = A and K = T in *E. coli* while R = G, W = T and K = G in *T. thermophilus*, and ends with the dinucleotide AC prefix of ACC \in X. *PrRNAXm*₆(*P. furiosus*, 1180, 1188, 9) = G,GGC,TAC,AC of nine nucleotides is a suffix of PrRNAXm₆ of *E. coli* starting with the nucleotide G suffix of CAG in *PrRNAXm*₆ of *E. coli*.
- (vii) The common X motif $PrRNAXm_7(E. coli, 1368, 1382, 15) = PrRNAXm_7(T. thermophilus, 1347, 1361, 15) = PrRNAXm_7(P. furiosus, 1328, 1342, 15) = RC,GGY,GAA,TAC,GTY,C of 15 nucleotides start with the dinucleotide AC (R=A) suffix of AAC, GAC, TAC <math>\in$ X in E. coli and with the dinucleotide GC (R=G) suffix of GGC \in X in T. thermophilus and P. furiosus, has four trinucleotides GGY, GAA, TAC, GTY \in X where Y=T in E. coli and T. thermophilus while Y=C in P. furiosus, and ends with the nucleotide C prefix of CAG, CTC, CTG \in X.

These seven prokaryotic rRNA *X* motifs have different primary structures. Thus, the classical bioinformatics methods, such as sequence alignment or phylogenetic inference, are not able to find these motifs which are only revealed by the circular code theory.

Figs. 1–3 show that the prokaryotic rRNA X motifs $PrRNAXm_1$ in maroon, $PrRNAXm_2$ in pink, $PrRNAXm_3$ in gold, $PrRNAXm_4$ in orange, $PrRNAXm_5$ in navy, $PrRNAXm_6$ in purple and $PrRNAXm_7$ in red of *E. coli*, *T. thermophilus* and *P. furiosus* are near the ribosome decoding

center (5' regions of tRNAs in dark blue, 3' regions of tRNAs in clearer blue and anticodons of tRNAs in black).

3.1.2. Identification of four conserved X circular code motifs ErRNAXm in 18S rRNAs of (nuclear) eukaryotes E near the ribosome decoding center

By using the Algorithm_Search_Xmotif_seqCommon (Section 2.2) with the global multiple sequence alignment ClustalW2, four *X* circular code motifs *ErRNAXm* are identified which are conserved in the eukaryotic 18S rRNAs of *S. cerevisiae* (3IZE), *T. aestivum* (3J5Z) and *H. sapiens* (3J3D) (Table 3):

- (i) $ErRNAXm_1(S. cerevisiae, 900, 911, 12) = ErRNAXm_1(T. aestivum, 905, 916, 12) = ErRNAXm_1(H. sapiens, 957, 968, 12) = A,GGT,GAA, ATT,CT of 12 nucleotides starts with the nucleotide A suffix of GAA, GTA <math>\in X$, has three trinucleotides GGT, GAA, ATT $\in X$ and ends with the dinucleotide CT prefix of CTC, CTG $\in X$.
- (ii) The large common X motif $ErRNAXm_2(S.\ cerevisiae, 987, 1004, 18) = ErRNAXm_2(T.\ aestivum, 992, 1009, 18) = ErRNAXm_2(H.\ sapiens, 1044, 1061, 18) = G,NTC,GAA,GAY,GAT,CAG,AT of 18 nucleotides starts with the nucleotide G suffix of CAG, CTG, GAG <math>\in X$, has five trinucleotides NTC, GAA, GAY, GAT, CAG $\in X$ where N = A and Y = T in *S.* cerevisiae, N = C and Y = C in *T.* aestivum, while N = T and Y = C in *H.* sapiens, and ends with the dinucleotide AT prefix of ATC, ATT $\in X$.
- (iii) $ErRNAXm_3(S. cerevisiae, 1189, 1197, 9) = ErRNAXm_3(T. aestivum, 1193, 1201, 9) = ErRNAXm_3(H. sapiens, 1246, 1254, 9) = A,CTC, AAC,AC of nine nucleotides starts with the nucleotide A suffix of GAA, GTA <math>\in X$, has two trinucleotides CTC, AAC $\in X$ and ends with the dinucleotide AC prefix of ACC $\in X$.
- (iv) The large X motif $ErRNAXm_4(S. cerevisiae, 1564, 1582, 19) = TC$, TTC,AAC,GAG,GAA,TTC,CT of 19 nucleotides starts with the dinucleotide TC suffix of ATC, CTC, GTC, TTC $\in X$, has five trinucleotides TTC, AAC, GAG, GAA, TTC $\in X$ and ends with the dinucleotide CT prefix of CTC, CTG $\in X$. $ErRNAXm_4(T.$ aestivum, 1575, 1596, 12) = TC,AAC,GAG,GAA,T is a factor of $ErRNAXm_4$ of *S. cerevisiae* starting with the dinucleotide TC suffix of the 1st TTC $\in X$ in $ErRNAXm_4$ of *S. cerevisiae* and ending with the nucleotide T prefix of the 2nd TTC $\in X$ in $ErRNAXm_4$ of *S. cerevisiae*. The X motif $ErRNAXm_4(H. sapiens,$ 1631, 1645, 15) = TG,AAC,GAG,GAA,TTC,C is an almost exact $suffix of <math>ErRNAXm_4$ of *S. cerevisiae*.

As with the prokaryotic rRNA *X* motifs *PrRNAXm*, the four eukaryotic rRNA *X* motifs *ErRNAXm* have completely different primary structures and thus, they can only be revealed by the circular code theory.

Figs. 4–6 show that the (nuclear) eukaryotic rRNA X motifs $ErRNAXm_1$ in purple, $ErRNAXm_2$ in pink, $ErRNAXm_3$ in red and $ErRNAXm_4$ in orange of S. cerevisiae, T. aestivum and H. sapiens are near the ribosome decoding center (5' regions of tRNAs in dark blue, 3' regions of tRNAs in clearer blue and anticodons of tRNAs in black), except $ErRNAXm_1$ in S. cerevisiae and T. aestivum.

Table 1

X circular code motifs studied in six crystallographic structures of the Protein Data Bank PDB. The main features of the studied crystallographic structures are given: PDB identification (ID), kingdom, organism, type (16S for prokaryotes, 18S for eukaryotes) and base length (b) of rRNA, mRNA (Yes for available, No for unavailable), type of tRNA for the A, P and E sites (No for unavailable).

PDB ID	Kingdom	Organism	rRNA	mRNA	A-tRNA	P-tRNA	E-tRNA
3J5T	Bacteria	Escherichia coli	16S (1542 b)	Yes	Phe	Phe	No
3I8G	Bacteria	Thermus thermophilus	16S (1516 b)	Yes	Phe	Phe	Phe
3J20	Archaea	Pyrococcus furiosus	16S (1495 b)	No	No	Phe	Phe
3IZE	Eukaryote, nuclear	Saccharomyces cerevisiae	18S (1800 b)	Yes	No	Asp	No
3J5Z	Eukaryote, nuclear	Triticum aestivum	18S (1810 b)	Yes	No	Asp	No
3J3D	Eukaryote, nuclear	Homo Sapiens	18S (1869 b)	No	No	No	Met

Table 2

Identification of seven X circular code motifs PrRNAXm in 16S rRNAs of prokaryotes P (bacteria E. coli and T. thermophilus, archaea P. furiosus) near the ribosome decoding center.

Symbol	X circular code motifs	Prokaryotic rRNA (PDB ID)	Start	End	Length
PrRNAXm ₁	G,GAG,GGT,GC G,GAG,GGC,GC GC,GGT,AAT,ACC,GGC,GGC,C * **	E. coli (3]5T) T. thermophilus (318G) P. furiosus (3]20)	537 517 480	545 525 497	9 9 18
PrRNAXm ₂	GC,GGT,GAA,AT GC,GGT,GAA,AT G,GGT,GAA,ATC,CT **** *** **	E. coli (3]5T) T. thermophilus (318G) P. furiosus (3]20)	688 668 643	697 677 654	10 10 12
PrRNAXm ₃	G, AAT, ACC, GGT, GGC, GAA, GGC, GGC, C G, AAC, GCC, GAT, GGC, GAA, GGC, A GT, GGC, GAA, GGC, GCC, C * *** *** ***	E. coli (3J5T) T. thermophilus (318G) P. furiosus (3J20)	714 694 676	736 713 690	23 20 15
PrRNAXm ₄	TA, GAT, ACC, CTG, GTA, GTC, CA TA, GAT, ACC, C TA, GAT, ACC, C ** *** *** *	E. coli (3J5T) T. thermophilus (318G) P. furiosus (3J20)	789 769 743	807 777 751	19 9 9
PrRNAXm ₅	G,GAT,GAC,GTC,AA G,GAC,GAC,GTC,T G,GGC,GAC,GGT,A * * *** *	E. coli (3J5T) T. thermophilus (318G) P. furiosus (3J20)	1186 1164 1146	1197 1174 1156	12 11 11
PrRNAXm ₆	T, TAC, GAC, CAG, GGC, TAC, AC T, TAC, GGC, CTG, GGC, GAC, AC G, GGC, TAC, AC * *** **	E. coli (3J5T) T. thermophilus (318G) P. furiosus (3J20)	1211 1189 1180	1228 1206 1188	18 18 9
PrRNAXm7	AC,GGT,GAA,TAC,GTT,C GC,GGT,GAA,TAC,GTT,C GC,GGC,GAA,TAC,GTC,C * *** **** *** *	E. coli (3J5T) T. thermophilus (318G) P. furiosus (3J20)	1368 1347 1328	1382 1361 1342	15 15 15

Fig. 1. *X* circular code motifs near the bacterial ribosome decoding center of *Escherichia coli* (crystallographic structure PDB 3J5T): the mRNA (green), the rRNA *X* motifs *PrRNAXm*₁(537, 545, 9) (maroon), *PrRNAXm*₂(688, 697, 10) (pink), *PrRNAXm*₃(714, 736, 23) (gold), *PrRNAXm*₄(789, 807, 19) (orange), *PrRNAXm*₅(1186, 1197, 12) (navy), *PrRNAXm*₆(1211, 1228, 18) (purple), *PrRNAXm*₇(1368, 1382, 15) (red), and the tRNA (5' region in dark blue, 3' region in clearer blue and anticodon in black). The remaining rRNA (lemonchiffon) is outside the neighborhood of these *X* motifs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. *X* circular code motifs near the bacterial ribosome decoding center of *Thermus thermophilus* (crystallographic structure PDB 3I8G): the mRNA (green), the rRNA *X* motifs *PrRNAXm*₁(517, 525, 9) (maroon), *PrRNAXm*₂(668, 677, 10) (pink), *PrRNAXm*₃(694, 713, 20) (gold), *PrRNAXm*₄(769, 777, 9) (orange), *PrRNAXm*₅(1164, 1174, 11) (navy), *PrRNAXm*₆(1189, 1206, 18) (purple), *PrRNAXm*₇(1347, 1361, 15) (red), and the tRNA (5' region in dark blue, 3' region in clearer blue and anticodon in black). The remaining rRNA (lemonchiffon) is outside the neighborhood of these *X* motifs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

164 Table 3

dentification of four X circular code motifs ErRNAXm in 18S rRNAs of (nuclear) eukaryotes E (S. cerevisiae, T. aestivum, H. sapiens) near the ribosome decoding cent
--

Symbol	X circular code motifs	Eukaryotic rRNA (PDB ID)	Start	End	Length
ErRNAXm ₁	A, GGT, GAA, ATT, CT A, GGT, GAA, ATT, CT A, GGT, GAA, ATT, CT * *** *** *** **	S. cerevisiae (3IZE) T. aestivum (3J5Z) H. sapiens (3J3D)	900 905 957	911 916 968	12 12 12
ErRNAXm ₂	G, ATC, GAA, GAT, GAT, CAG, AT G, CTC, GAA, GAC, GAT, CAG, AT G, TTC, GAA, GAC, GAT, CAG, AT * ** *** ** *** *** ***	S. cerevisiae (3IZE) T. aestivum (3J5Z) H. sapiens (3J3D)	987 992 1044	1004 1009 1061	18 18 18
ErRNAXm ₃	A, CTC, AAC, AC A, CTC, AAC, AC A, CTC, AAC, AC * *** *** **	S. cerevisiae (3IZE) T. aestivum (3J5Z) H. sapiens (3J3D)	1189 1193 1246	1197 1201 1254	9 9 9
ErRNAXm4	TC, TTC, AAC, GAG, GAA, TTC, CT TC, AAC, GAG, GAA, T TG, AAC, GAG, GAA, TTC, C * *** *** *** ***	S. cerevisiae (3IZE) T. aestivum (3J5Z) H. sapiens (3J3D)	1564 1575 1631	1582 1596 1645	19 12 15

3.2. Identification of X circular code motifs in tRNAs of prokaryotes

We give the main features of *X* motifs for each isoaccepting tRNA of prokaryotes (bacteria *E. coli* and *T. thermophilus*, archaea *P. furiosus*), more details on the *X* motifs are found in Tables 4a–u. We use the classical genetic alphabet convention to be able to engulf *X* motifs that are fairly similar within a unified pattern. Let $R = \{A,G\}$, $Y = \{C,T\}$, $S = \{C,G\}$, $W = \{A,T\}$, $K = \{G,T\}$, $M = \{A,C\}$ and $N = \{A,C,G,T\}$. Furthermore, in term of *X* motif length, we are distinguishing three classes of *X* motifs: very large *X* motifs greater or equal to 20 nucleotides (remember that the average lengths of prokaryotic tRNAs range typically from 71 to 91 nucleotides for Cys and Ser,

respectively, see Section 2.4.1 and Fig. 2 in Michel, 2013), large *X* motifs between 16 and 19 nucleotides and *X* motifs between 9 and 15 nucleotides. *X* motifs of lengths equal to 9 nucleotides already retrieve the reading frame with a probability of 99.9% and *X* motifs of lengths greater or equal to 12 nucleotides always retrieve, by definition, the reading frame, i.e. with a probability of 100% (Table 3 and Fig. 4 in Michel, 2012). Moreover, the underline in an *X* motif signifies that the underlined nucleotides are in common with one or more other motifs. Finally, the *X* motifs are studied according to three regions of tRNAs: *X* motifs between the 5' ends of tRNAs and the anticodon (called here 5' regions), *X* motifs having at least one nucleotide in the anticodon (anticodon regions) and *X* motifs between the anticodon and the 3' ends of tRNAs (3' regions). The

Fig. 3. *X* circular code motifs near the archaeal ribosome decoding center of *Pyrococcus furiosus* (crystallographic structure PDB 3J20): the rRNA Xmotifs *PrRNAXm*₁(480, 497, 18) (maroon), *PrRNAXm*₂(643, 654, 12) (pink), *PrRNAXm*₃(676, 690, 15) (gold), *PrRNAXm*₄(743, 751, 9) (orange), *PrRNAXm*₅(1146, 1156, 11) (navy), *PrRNAXm*₆(1180, 1188, 9) (purple), *PrRNAXm*₇(1328, 1342, 15) (red), and the tRNA (5' region in dark blue, 3' region in clearer blue and anticodon in black). The remaining rRNA (lemonchiffon) is outside the neighborhood of these *X* motifs and the mRNA is missing (Table 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. *X* circular code motifs near the (nuclear) eukaryotic ribosome decoding center of *Saccharomyces cerevisiae* (crystallographic structure PDB 3IZE): the mRNA (green), the rRNA *X* motifs *ErRNAXm*₁(900, 911, 12) (purple), *ErRNAXm*₂(987, 1004, 18) (pink), *ErRNAXm*₃(1189, 1197, 9) (red), *ErRNAXm*₄(1564, 1582, 19) (orange), and the tRNA (5' region in dark blue, 3' region in clearer blue and anticodon in black). The remaining rRNA (lemonchiffon) is outside the neighborhood of these *X* motifs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. *X* circular code motifs near the (nuclear) eukaryotic ribosome decoding center of *Triticum aestivum* (crystallographic structure PDB 3J5Z): the mRNA (green), the rRNA X motifs *ErRNAXm*₁(905, 916, 12) (purple), *ErRNAXm*₂(992, 1009, 18) (pink), *ErRNAXm*₃(1193, 1201, 9) (red), *ErRNAXm*₄(1575, 1596, 12) (orange), and the tRNA (5' region in dark blue, 3' region in clearer blue and anticodon in black). The remaining rRNA (lemonchiffon) is outside the neighborhood of these X motifs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

results below will identify X motifs, a few of them being very large, and different relations, in particular a shifting by 0, +1 or +2 mod 3 nucleotides with other X motifs or the anticodon.

3.2.1. X circular code motifs in Ala-tRNAs (Table 4a)

- (i) 5' regions of Ala-tRNAs: The X motif T,CAG,CTG,GG and the class of X motifs GC,CTG,GWA,K are shifted in frame (modulo 3 according to their suffix-prefix). The class of X motifs GC,GCC, GCC,YT occurs before (5') the anticodons GGC and TGC.
- (ii) Anticodon regions of Ala-tRNAs: The X motif GC,GCC,GCC,CTC, GC is in a different frame than the anticodon CGC. The very large X motif Ala-tRNAXm₁ GC,CTC,AAT,GGC,ATT,GAG,GAG, GTC,A of 24 nucleotides in *T. thermophilus* is in frame with the anticodon GGC. The X motif GC,CTG,AAT,C which is prefix of Ala-tRNAXm₁ is in frame with the anticodon CGC.
- (iii) 3' regions of Ala-tRNAs: The class of X motifs Ala-tRNAXm₂ K, SAG,GAG,GTC,W is suffix of Ala-tRNAXm₁. The class of X motifs R,GAG,GYC,R is suffix of Ala-tRNAXm₂. Two X motifs are also observed: A,GGT,CAG,GG and CC,CTC,GGC,T.

3.2.2. X circular code motifs in Arg-tRNAs (Table 4b)

- (i) 5' regions of Arg-tRNAs: The X motif CC,GGT,GGC,CT is found. The large X motif Arg-tRNAXm₁ CC,GTA,GTT,CAG,CTG,GAT,A of 18 nucleotides is identified in *E. coli*. The class of X motifs S, GTA,GYY,TA is prefix of Arg-tRNAXm₁, and the class of X motifs T,CAG,CWG,GAT,A and Arg-tRNAXm₂ RS,CWG,GAT,R are suffix of Arg-tRNAXm₁. The X motif AT,AAC,GAG,C and Arg-tRNAXm₂ are shifted in frame. The X motif TA,GAG,TAC,T is observed. The class of X motifs G,GGC,GYC,GGC,CT and the X motif GC,AAC, GAC,CT occur before the anticodons TCG and TCT.
- (ii) Anticodon regions of Arg-tRNAs: The large X motif ArgtRNAXm₃ A,GAG,AAC,GCC,GCC,CTC,C of 17 nucleotides in P. furiosus is in a different frame than the anticodon CCG. The X motif GC,GTC,GGC,CTC,C which is suffix of Arg-tRNAXm₃ is in a different frame than the anticodon CCG. The large X motif ArgtRNAXm₄ AG,GGC,GGC,GCC,CTC,CT of 16 nucleotides in P.

Fig. 6. *X* circular code motifs near the (nuclear) eukaryotic ribosome decoding center of *Homo Sapiens* (crystallographic structure PDB 3J3D): the rRNA *X* motifs *ErRNAXm*₁(957, 968, 12) (purple), *ErRNAXm*₂(1044, 1061, 18) (pink), *ErRNAXm*₃(1246, 1254, 9) (red), *ErRNAXm*₄(1631, 1645, 15) (orange), and the tRNA (5' region in dark blue, 3' region in clearer blue and anticodon in black). The remaining rRNA (lemonchiffon) is outside the neighborhood of these *X* motifs and the mRNA is missing (Table 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

furiosus is in a different frame than the anticodon CCT. The X motif G,GGC,TTC,CT which is suffix of Arg- $tRNAXm_4$ is in a different frame than the anticodon CCT. The X motif Arg- $tRNAXm_5$ A,GCC,GCC,TCT,TA is in a different frame than the anticodon TCT. The class of X motifs G,RCC,TCT,TA which is suffix of Arg- $tRNAXm_5$ is in a different frame than the anticodon TCT. The X motif G,GCC,TTC,GG is in a different frame than the anticodon TCT. The X motif G,GCC,TTC,GG is in a different frame than the anticodon TCT. The X motif G,GCC,TTC,GG is in a different frame than the anticodon TCG. The large X motif Arg- $tRNAXm_6$ A,GTA,CTC,GGC,TAC,GAA,C of 17 nucleotides in *E. coli* is in a different frame than the anticodon ACG. The X motif T,GAC, TAC,GG is in a different frame than the anticodon ACG. The class of X motifs G,GAY,CWS,SAG,GTC,S is in frame with the anticodons ACG and GCG.

(iii) 3' regions of Arg-tRNAs: The X motifs A,GCC,GAA,GGT,CAG,A and the class of X motifs A,WTC,CTG,CAG,GG are observed.

3.2.3. X circular code motifs in Asn-tRNAs (Table 4c)

- (i) 5' regions of Asn-tRNAs: The X motif Asn-tRNAXm₁ GCC,GCC, GTA,GC is observed. The X motif Asn-tRNAXm₂ T,GTA,GTT,CAG, T and Asn-tRNAXm₁ are shifted in frame. The large X motif AsntRNAXm₃ T,CAG,CAG,GTA,GAG,CAG,C of 17 nucleotides in T. thermophilus and Asn-tRNAXm₂ are shifted in frame. The X motif <u>AG,AAC,GGC,GG</u> is shifted by +2 nucleotides from AsntRNAXm₃ (underlined nucleotides).
- (ii) Anticodon regions of Asn-tRNAs: The X motif Asn-tRNAXm₄ TA, ACC,GGT,A is in a different frame than the anticodon GTT.
- (iii) 3' regions of Asn-tRNAs: The X motif CC,GGC,GGT,C and AsntRNAXm₄ are shifted in frame. The X motif G,GGC,GGC,GGC, GCC is observed.
- 3.2.4. X circular code motifs in Asp-tRNAs (Table 4d)
- (i) 5' regions of Asp-tRNAs: The X motif Asp-tRNAXm₁ G,GGT,GGT, GTA,GCC,C is observed. The large X motif Asp-tRNAXm₂ GT,GGT,

Table 4a

Identification of X circular code motifs Ala-tRNAXm in tRNAs of alanine (Ala) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Ala	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
TGC	34	T, CAG, CTG, GG			E. coli C08004469	12	20	9
TGC	34	T, CAG, CTG, GG			E. coli C08004522	12	20	9
GGC	34	T, CAG, CTG, GG			E. coli C08004535	12	20	9
TGC	36	GC,CTG,GTA,T			P. furiosus At1825	15	23	9
GGC	36	GC,CTG,GTA,T			P. furiosus At1834	15	23	9
CGC	35	GC,CTG,GAA,GAG,C			P. furiosus At1833	15	26	12
TGC	36	GC,GCC,GCC,CT			P. furiosus At1825	26	35	10
GGC	36	GC,GCC,GCC,TT			P. furiosus At1834	26	35	10
CGC	35	GC,GCC,GCC,CT	C,GC		P. furiosus At1833	25	37	13
GGC	34	GC,CTC,AAT,	GGC,	ATT, GAG, GAG, GTC, A	T. thermophilus C025943	26	49	24
CGC	34	GC,CTG,AAT,	С		T. thermophilus C025964	26	34	9
TGC	34			G, CAG, GAG, GTC, T	E. coli C08004469	39	49	11
TGC	34			G,CAG,GAG,GTC,T	E. coli C08004522	39	49	11
CGC	34			T, CAG, GAG, GTC, A	T. thermophilus C025964	39	49	11
GGC	34			AA,GAG,GTC,A	E. coli C08004535	41	49	9
CGC	35			G,GAG,GCC,GC	P. furiosus At1833	43	51	9
GGC	34			A,GGT,CAG,GG	T. thermophilus C025943	44	52	9
CGC	34			A,GGT,CAG,GG	T. thermophilus C025964	44	52	9
GGC	34			CC,CTC,GGC,T	T. thermophilus C025943	62	70	9
CGC	34			CC,CTC,GGC,T	T. thermophilus C025964	62	70	9

Table 4b

Identification of X circular code motifs Arg-tRNAXm in tRNAs of arginine (Arg) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Arg	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
TCG	36	G,GCC,GGT,GGC,CT			P. furiosus At1842	2	13	12
GCG	36	CC,GGT,GGC,CT			P. furiosus At1850	4	13	10
ACG	35	CC, GTA, GTT, CAG, CTG, GAT, A			E. coli C08004532	5	22	18
TCT	35	CC, GTA, GCC, TA			P. furiosus At1826	5	14	10
ССТ	33	G, GTA, GCC, TA			P. furiosus At1852	6	14	9
CCG	36	G, GTA, GTT, TA			P. furiosus At1832	6	14	9
CCG	35	T, CAG, CTG, GAT, A			E. coli C08004500	12	22	11
ACG	35	T, CAG, CTG, GAT, A			E. coli C08004529	12	22	11
ACG	35	T, CAG, CTG, GAT, A			T. thermophilus C025939	12	22	11
CCG	35	T, CAG, CTG, GAT, A			T. thermophilus C025957	12	22	11
CCT	35	T, CAG, CAG, GAT, A			T. thermophilus C025920	12	22	11
TCT	35	AG, CAG, GAT, A			P. furiosus At1826	14	22	9
CCG	36	GC, CAG, GAG, A			P. furiosus At1832	15	23	9
CCT	33	GC, CAG, GAT, A			P. furiosus At1852	15	23	9
TCG	36	GC, CTG, GAT, GG			P. furiosus At1842	15	24	10
GCG	36	GC, CTG, GAT, A			P. furiosus At1850	15	23	9
CCT	31	AT, AAC, GAG, C			E. coli C08004487	21	29	9
ACG	35	TA, GAG, TAC, T			E. coli C08004529	21	29	9
ACG	35	TA, GAG, TAC, T			E. coli C08004532	21	29	9
TCT	35	AG, GGC, GCC, GGC, CT			P. furiosus At1826	22	34	13
TCG	36	G,GGC,GTC,GGC,CT			P. furiosus At1842	24	35	12
TCT	35	GC, AAC, GAC, CT			E. coli C08004473	25	34	10
CCG	36	A, GAG, AAC, GCC, GCC, CT	c,c		P. furiosus At1832	21	37	17
CCG	35	GC, GTC, GGC, CT	c,c		T. thermophilus C025957	25	36	12
CCT	36	AG, GGC, GGC, GGC, CT	C,CT		P. furiosus At1852	23	38	16
CCT	35	G,GGC,TT	C,CT		T. thermophilus C025920	29	37	9
TCT	34	A,GCC,GCC,T	TC,T	A	T. thermophilus C025953	26	37	12
TCT	35	G,GCC,T	TC,T	A	P. furiosus At1826	30	38	9
TCT	35	G, ACC, T	TC,T	A	E. coli C08004473	30	38	9
TCG	36	G,GCC,T	TC,G	G	P. furiosus At1842	31	39	9
ACG	35	A, GTA, CTC, GGC, T	AC,G	AA, C	E. coli C08004529	24	40	17
ACG	35	A, GTA, CTC, GGC, T	AC,G	AA, C	E. coli C08004532	24	40	17
ACG	35	T, GAC, T	AC,G	G	T. thermophilus C025939	30	38	9
GCG	36		G,	GAC, CTC, GAG, GTC, C	P. furiosus At1850	38	51	14
ACG	35		G,	GAT, CAG, CAG, GTC, GG	T. thermophilus C025939	37	51	15
ССТ	31			TG, CAG, GTT, C	E. coli C08004487	47	55	9
CCG	35			A, GCC, GAA, GGT, CAG, A	T. thermophilus C025957	39	52	14
TCG	36			A, GCC, GAA, GGT, C	P. furiosus At1842	40	50	11
CCT	31			A, TTC, CTG, CAG, GG	E. coli C08004487	57	68	12
TCT	35			A, ATC, CTG, CAG, GGC, GC	E. coli C08004473	59	73	15

Table 4c

Identification of X circular code motifs Asn-tRNAXm in tRNAs of asparagine (Asn) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Asn	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
GTT	34	GCC, GCC, GTA, GC			P. furiosus At1856	1	11	11
GTT	34	T, GTA, GTT, CAG, T			E. coli C08004483	6	16	11
GTT	34	T,GTA,GTT,CAG,T			E. coli C08004537	6	16	11
GTT	34	T, CAG, CAG, GTA, GAG, CAG, C			T. thermophilus C025962	12	28	17
GTT	34	AG, AAC, GGC, GG			E. coli C08004483	21	30	10
GTT	34	AG, AAC, GGC, GG			E. coli C08004537	21	30	10
GTT	34		Т	A, ACC, GGT, A	T. thermophilus C025962	36	44	9
GTT	34			CC,GGC,GGT,C	P. furiosus At1856	40	48	9
GTT	34			G,GGC,GGC,GGC,GCC	P. furiosus At1856	63	75	13

Table 4d

Identification of X circular code motifs Asp-tRNAXm in tRNAs of aspartic acid (Asp) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Asp	AC pos	5' region	AC	3' region	Organism	Start	End	Size
GTC	37	G,GGT,GGT,GTA,GCC,C			P. furiosus At1869	5	18	14
GTC	35	GT,GGT,GTA,GTT,GGT,TA			T. thermophilus C025932	7	22	16
GTC	35	G,GTA,GTT,CAG,T			E. coli C08004470	6	16	11
GTC	35	A,GTC,GGT,TA			E. coli C08004470	14	22	9
GTC	35	TG,GTT,AAC,AC			T. thermophilus C025932	17	26	10
GTC	35	TA, GAA, TAC, CTG, C			E. coli C08004470	21	32	12
GTC	35	A, GAA, TAC, CT			E. coli C08004470	22	30	9
GTC	35			G,GAG,ATC,GC	T. thermophilus C025932	43	51	9

Table 4e

Identification of X circular code motifs Cys-tRNAXm in tRNAs of cysteine (Cys) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Cys	AC pos	5' region	AC	3' region	Organism	Start	End	Size
GCA	33	GGC, GCC, GTA, GCC, AA			T. thermophilus C025925	1	14	14
GCA	33	GC, GTT, AAC, AA			E. coli C08004540	4	13	10
GCA	33	TA, GAG, GCC, A			P. furiosus At1859	13	21	9
GCA	33	A,GGC,CAG,GC			P. furiosus At1859	16	24	9
GCA	33	A,GGT,CT	G,CA		T. thermophilus C025925	27	35	9
GCA	33	A,CT	G,CA	G,ATC,C	P. furiosus At1859	30	40	11
GCA	33		A	A, AAC, CTC, CA	T. thermophilus C025925	35	44	10
GCA	33			A, TTC, GCC, GGT, T	T. thermophilus C025925	44	54	11
GCA	33			G,GCC,GGC,GCC,T	T. thermophilus C025925	62	72	11

Table 4f

Identification of X circular code motifs Gln-tRNAXm in tRNAs of glutamine (Gln) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Gln	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
TTG	33	G,GGT,ATC,GCC,AA			E. coli C08004549	3	14	12
CTG	33	G,GGT,ATC,GCC,AA			E. coli C08004552	3	14	12
CTG	33	G,GGT,GTC,GTC,TA			T. thermophilus C025940	3	14	12
TTG	33	G,GGC,GTC,GTC,TA			T. thermophilus C025948	3	14	12
TTG	35	GT,GGT,GTA,GC			P. furiosus At1827	7	16	10
CTG	35	GT,GGT,GTA,GC			P. furiosus At1849	7	16	10
TTG	33	AA,GGC,ACC,GGT,TT			E. coli C08004549	20	32	13
CTG	33	AA,GGC,ACC,GG			E. coli C08004552	20	29	10
CTG	33	G,ATT,	CTG,	ATT, C	E. coli C08004552	29	39	11
TTG	33		TT,G	AT, ACC, GGC, ATT, C	E. coli C08004549	33	47	15
CTG	33			CC,GGC,ATT,C	E. coli C08004552	39	47	9
TTG	33			CC,GCC,GGT,GGT,GGT,T	T. thermophilus C025948	39	53	15
CTG	33			CC,GCC,GGT,C	T. thermophilus C025940	39	47	9
TTG	33			CC,CTG,GTT,C	E. coli C08004549	47	55	9
CTG	33			CC, GAG, GTT, C	E. coli C08004552	47	55	9
TTG	33			A,ATC,CAG,GTA,C	E. coli C08004549	57	67	11
CTG	33			A, ATC, CTC, GTA, C	E. coli C08004552	57	67	11

Table 4g

Identification of X circular code motifs Glu-tRNAXm in tRNAs of glutamic acid (Glu) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Glu	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
CTC	35	CC,GGT,GGT,GTA,GCC,C			P. furiosus At1830	4	18	15
TTC	37	CC,GGT,GGT,GTA,GCC,C			P. furiosus At1847	4	18	15
TTC	35	CC,TTC,GTC,TA			E. coli C08004497	5	14	10
TTC	35	CC,TTC,GTC,TA			E. coli C08004534	5	14	10
TTC	34	CC,ATC,GAC,TA			T. thermophilus C025941	5	14	10
CTC	32	CC,ATC,GTC,TA			T. thermophilus C025923	5	14	10
CTC	33	CC,ATC,GTC,TA			T. thermophilus C025942	5	14	10
TTC	35	TA, GAG, GCC, CAG, GAC, ACC, GCC, CT			E. coli C08004497	13	34	22
TTC	35	TA, GAG, GCC, CAG, GAC, ACC, GCC, CT			E. coli C08004534	13	34	22
CTC	33	TA, GAG, GCC, TA			T. thermophilus C025942	13	22	10
TTC	34	AG,GTC,ACC,GGC,CT			T. thermophilus C025941	21	33	13
TTC	34			AA,GCC,GGC,GGC,GG	T. thermophilus C025941	37	49	13
TTC	35			AC,GGC,GGT,AAC,A	E. coli C08004497	38	49	12
TTC	35			AC,GGC,GGT,AAC,A	E. coli C08004534	38	49	12
CTC	32			AG,GCC,GAA,AC	T. thermophilus C025923	38	47	10
CTC	33			AG,GCC,GAG,AC	T. thermophilus C025942	39	48	10

Table 4h

Identification of X circular code motifs *Gly-tRNAXm* in tRNAs of glycine (Gly) in prokaryotes (bacteria *E. coli* and *T. thermophilus*, archaea *P. furiosus*).

AC Gly	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
CCC	37	GC, GGT, GGT, A		*	P. furiosus At1837	1	9	9
TCC	37	GC,GGT,GGT,A			P. furiosus At1844	1	9	9
GCC	37	GC,GGT,GGT,A			P. furiosus At1851	1	9	9
TCC	34	G, GGC, ATC, GTA, TA			E. coli C08004509	3	14	12
CCC	33	G,GGC,GTA,GTT,CA			E. coli C08004527	3	14	12
CCC	37	TG, GTA, GTC, TA			P. furiosus At1837	5	14	10
TCC	37	TG, GTA, GTC, TA			P. furiosus At1844	5	14	10
GCC	37	TG, GTA, GTC, TA			P. furiosus At1851	5	14	10
CCC	33	AG, TTC, AAT, GGT, A			E. coli C08004527	9	20	12
TCC	34	AT, AAT, GGC, TA			E. coli C08004509	12	21	10
CCC	37	GC, CTG, GTC, TA			P. furiosus At1837	15	24	10
TCC	37	GC, CTG, GTC, TA			P. furiosus At1844	15	24	10
GCC	37	GC, CTG, GTC, TA			P. furiosus At1851	15	24	10
CCC	33	TG,GTA,GAA,C			E. coli C08004527	16	24	9
GCC	34	TG,GTA,GAG,CA			E. coli C08004512	17	26	10
GCC	34	TG,GTA,GAG,CA			E. coli C08004539	17	26	10
CCC	34	TG,GTA,GAG,CA			T. thermophilus C025960	17	26	10
TCC	35	TG, GTA, GAG, CA			T. thermophilus C025952	18	27	10
GCC	34	G,GTA,GAG,CA			T. thermophilus C025918	18	26	9
CCC	33	AG, AAC, GAG, A			E. coli C08004527	20	28	9
TCC	34	AT, TAC, CTC, A			E. coli C08004509	21	29	9
TCC	37	AG, GAC, GCC, GGC, CT			P. furiosus At1844	24	36	13
TCC	35	GC, ATC, GGC, CT			T. thermophilus C025952	25	34	10
CCC	37	AG, GAC, GCC, GGC, CT	c,c		P. furiosus At1837	24	38	15
CCC	34	GC, ATC, GGC, TT	C,C		T. thermophilus C025960	24	35	12
GCC	37	AG, GAC, GCC, ACC, CT	G,C		P. furiosus At1851	24	38	15
TCC	34	A,GCC,T	TC,C	A	E. coli C08004509	29	37	9
TCC	35	G,GCC,T	TC,C	A	T. thermophilus C025952	30	38	9
CCC	34			AA, GCC, GAG, GGT, C	T. thermophilus C025960	37	48	12
TCC	35			AA, GCC, GAG, GGT, C	T. thermophilus C025952	38	49	12
CCC	37			AA, GCC, GGC, GAC, C	P. furiosus At1837	40	51	12
TCC	37			A,GCC,GGC,GAC,C	P. furiosus At1844	41	51	11
TCC	34			T, GAT, GAT, GC	E. coli C08004509	41	49	9
CCC	33		_	TA, TAC, GAG, GGT, T	E. coli C08004527	42	53	12
GCC	37			TG, GAG, ACC, C	P. furiosus At1851	44	52	9
GCC	34			GC, GAG, TTC, GAG, T	E. coli C08004512	49	60	12
GCC	34			GC, GAG, TTC, GAG, T	E. coli C08004539	49	60	12
GCC	34			GT, CTC, GTT, T	E. coli C08004512	59	67	9
GCC	34		_	GT, CTC, GTT, T	E. coli C08004539	59	67	9
CCC	33			CC, TTC, GCC, C	E. coli C08004527	60	68	9
CCC	37			G,GCC,ACC,GC	P. furiosus At1837	66	74	9
TCC	37			G,GCC,ACC,GC	P. furiosus At1844	66	74	9
GCC	37			G,GCC,ACC,GC	P. furiosus At1851	66	74	9

Table 4i

Identification of X circular code motifs His-tRNAXm in tRNAs of histidine (His) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC His	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
GTG	36	G,GGT,GGT,GTA,GCC,T			P. furiosus At1843	5	18	14
GTG	35	T, CAG, CTG, GTT, A			T. thermophilus C025927	12	22	11
GTG	36	GC, CTG, GTT, A			P. furiosus At1843	15	23	9
GTG	34	TG,GTA,GAG,C			E. coli C08004501	17	25	9
GTG	34	A,GCC,CTG,GAT,T			E. coli C08004501	23	33	11
GTG	34			A,TTC,CAG,TT	E. coli C08004501	37	45	9
GTG	34			A,GTT,GTC,GT	E. coli C08004501	42	50	9
GTG	36			CC,CTG,GCC,C	P. furiosus At1843	43	51	9

Table 4j

Identification of X circular code motifs Ile-tRNAXm in tRNAs of isoleucine (Ile) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Ile	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
GAT	35	G,GGC,GAT,TA			T. thermophilus C025963	1	9	9
GAT	35	T, CAG, CTG, GTT, A			T. thermophilus C025963	12	22	11
GAT	36	GC,CTG,GTC,A			P. furiosus At1831	15	23	9
GAT	35	A,GGT,GGT,TA			E. coli C08004468	14	22	9
GAT	35	A,GGT,GGT,TA			E. coli C08004521	14	22	9
GAT	35			AG, GGT, GAG, GTC, GGT, GGT, T	E. coli C08004468	39	56	18
GAT	35			AG, GGT, GAG, GTC, GGT, GGT, T	E. coli C08004521	39	56	18
GAT	35			GT, GAG, GTC, GGT, GGT, T	T. thermophilus C025963	42	56	15
GAT	36			G,TTC,GAA,GCC,C	P. furiosus At1831	55	65	11
GAT	35			CC, ACC, ATC, GCC, CA	T. thermophilus C025963	62	74	13
GAT	35			T, CAG, GCC, TAC	E. coli C08004468	66	75	10

Table 4k

Identification of X circular code motifs Leu-tRNAXm in tRNAs of leucine (Leu) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Leu	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
CAG	35	GC, GAA, GGT, GGC, GG			E. coli C08004502	1	13	13
CAG	35	GC, GAA, GGT, GGC, GG			E. coli C08004516	1	13	13
CAG	35	GC, GAA, GGT, GGC, GG			E. coli C08004517	1	13	13
TAG	35	GC, GAG, GAT, GGC, GG			T. thermophilus C025928	1	13	13
TAA	34	G,GGT,GGC,GG			T. thermophilus C025929	5	13	9
CAG	35	G,GGT,GGC,GG			T. thermophilus C025947	5	13	9
CAA	35	G,GGT,GGC,GG			T. thermophilus C025954	5	13	9
GAG	35	A,GGT,GGT,GG			E. coli C08004524	5	13	9
GAG	35	G,GGT,GGT,GG			T. thermophilus C025921	5	13	9
TAA	35	G, GAT, GGT, GG			E. coli C08004541	5	13	9
CAG	37	G,GTT,GCC,GAG,C			P. furiosus At1867	6	16	11
TAG	37	G,GTT,GCC,GAG,C			P. furiosus At1838	6	16	11
CAA	37	G,GTT,GCC,GAG,C			P. furiosus At1848	6	16	11
GAG	37	G,GTT,GCC,GAG,C			P. furiosus At1853	6	16	11
CAA	35	GT, GGC, GAA, ATC, GGT, A			E. coli C08004515	7	21	15
TAG	35	GT, GGC, GAA, ATT, GGT, A			E. coli C08004548	7	21	15
GAG	35	TG, GAA, CTG, GTA, GAC, AC			T. thermophilus C025921	11	26	16
CAG	37	GC, CTG, GTC, AA			P. furiosus At1867	15	24	10
TAG	37	GC, CTG, GTC, AA			P. furiosus At1838	15	24	10
CAA	37	GC, CTG, GTC, AA			P. furiosus At1848	15	24	10
GAG	37	GC, CTG, GTC, AA			P. furiosus At1853	15	24	10
TAA	37	GC, CTG, GCC, AA			P. furiosus At1862	15	24	10
CAG	35	TG, GTA, GAC, GC			E. coli C08004502	17	26	10
CAG	35	TG, GTA, GAC, GC			E. coli C08004516	17	26	10
CAG	35	TG, GTA, GAC, GC			E. coli C08004517	17	26	10
GAG	35	TG, GTA, GAC, AC			E. coli C08004524	17	26	10
TAG	35	TG, GTA, GAC, GC			E. coli C08004548	17	26	10
CAG	35	TG, GTA, GAC, GC			T. thermophilus C025947	17	26	10
TAA	34	G, GTA, GAC, GC			T. thermophilus C025929	17	25	9
CAA	35	G, GTA, GAC, GC			E. coli C08004515	18	26	9
TAA	35	G, GTA, GAC, AC			E. coli C08004541	18	26	9
TAG	35	G, GTA, GAC, GC			T. thermophilus C025928	18	26	9
CAA	35	G, GTA, GAC, GC			T. thermophilus C025954	18	26	9
GAG	35	AC, GCC, ATC, TT			T. thermophilus C025921	25	34	10
TAG	35	AC, CAG, ATT,	TA		E. coli C08004548	27	36	10
CAG	35	TG.ATT.	CAG,	GGT, CA	T. thermophilus C025947	30	42	13
CAG	37	G.ATT.	CAG,	GGT, C	P. furiosus At1867	33	43	11
GAG	37	G,ATT,	GAG,	GGT, C	P. furiosus At1853	33	43	11
TAG	35		AG,	GTT, CTG, GC	E. coli C08004548	36	45	10
CAA	35		AA,	AAT, CTG, CTG, T	T. thermophilus C025954	36	47	12
CAA	35		AA,	ATC, AAC, C	E. coli C08004515	37	45	9
CAA	35			A, ACC, GTA, GAA, AT	E. coli C08004515	42	53	12
TAA	35			CC, CTC, GGC, GTT, C	E. coli C08004541	41	52	12
TAG	35			T, GGC, GCC, GC	E. coli C08004548	42	50	9
GAG	35			G, GGT, GGT, GCC, C	T. thermophilus C025921	39	49	11
TAA	37			CC, GGT, GCC, GTA, GG	P. furiosus At1862	43	55	13
CAA	35			GT, GCC, GGT, T	E. coli C08004515	56	64	9
TAG	35			GC, GAG, TTC, AA	E. coli C08004548	58	67	10
TAG	35			GT, CTC, GCC, T	E. coli C08004548	68	76	9
CAA	35			G, GCC, TTC, GGC, ACC	E. coli C08004515	72	84	13
TAG	35			G, CTC, CTC, GC	T. thermophilus C025928	73	81	9

Table 41

Identification of X circular code motifs Lys-tRNAXm in tRNAs of lysine (Lys) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Lys	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
CTT	34	AG, CTC, AAC, T			T. thermophilus C025946	9	17	9
TTT	33	T, CAG, CTG, GC			T. thermophilus C025922	12	20	9
TTT	35	GC, CTG, GTT, A			P. furiosus At1828	15	23	9
CTT	36	GC, CTG, GTT, A			P. furiosus At1858	15	23	9
CTT	34	AA, CTG, GTA, GAG, CA			T. thermophilus C025946	14	26	13
TTT	33	TG,GTA,GAG,CAG,TT			E. coli C08004474	17	29	13
TTT	33	A,GTT,GAC,	TT		E. coli C08004474	26	34	9
TTT	33	A, ACC, GAC,	TT		T. thermophilus C025922	26	34	9
CTT	34		т	A,ATC,GGT,GG	T. thermophilus C025946	36	45	10
TTT	33			TA, ATC, GGT, A	T. thermophilus C025922	36	44	9
TTT	33			TA, ATC, AAT, T	E. coli C08004474	36	44	9
CTT	34			TG,GGT,TAC,A	T. thermophilus C025946	43	51	9
TTT	35			CC,GGT,GGT,C	P. furiosus At1828	42	50	9
CTT	34			TA, CAG, GTT, C	T. thermophilus C025946	48	56	9
CTT	36			G,CAG,GTC,GG	P. furiosus At1858	44	52	9
TTT	33			A,ATC,CTG,CA	E. coli C08004474	58	66	9
TTT	33			A, ATC, CTG, CA	T. thermophilus C025922	58	66	9

GTA,GTT,GGT,TA of 16 nucleotides in *T. thermophilus* and *Asp-tRNAXm*₁ are shifted in frame. The *X* motif *Asp-tRNAXm*₃ G,GTA, GTT,C<u>AG,T</u> is suffix of *Asp-tRNAXm*₂. The *X* motif *Asp-tRNAXm*₄ <u>A,GTC,GGT,TA</u> is shifted by +1 nucleotide from *Asp-tRNAXm*₃. The *X* motif TG,GTT,AAC,AC is shifted by +2 nucleotides from *Asp-tRNAXm*₄. The *X* motif TA,GAA,TAC,CTG,C is observed.

- (ii) 3' regions of Asp-tRNAs: The X motif G,GAG,ATC,GC is observed.
- 3.2.5. X circular code motifs in Cys-tRNAs (Table 4e)
- (i) 5' regions of Cys-tRNAs: The X motif Cys-tRNAXm₁ GGC,GCC, GTA,GCC,AA is observed. The X motif GC,GTT,AAC,AA is suffix of Cys-tRNAXm₁. The X motif <u>A,GGC,CA</u>G,GC is shifted by +1 nucleotide from TA,G<u>AG,GCC,A</u>.
- (ii) Anticodon regions of Cys-tRNAs: The X motif Cys-tRNAXm₂ A, GGT,CTG,CA is in a different frame than the anticodon GCA. The X motif Cys-tRNAXm₃ A,CTG,CAG,ATC,C and Cys-tRNAXm₂ are shifted in frame, thus Cys-tRNAXm₃ is in a different frame

_

Table 4m

Identification of X circular code motifs Met-tRNAXm in tRNAs of methionine (Met) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Met	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
CAT	35	GGC, TAC, GTA, GC		<u> </u>	E. coli C08004547	1	11	11
CAT	35	GGC, GGC, GTA, GC			T. thermophilus C025934	1	11	11
CAT	35	TG, GAG, CAG, C			E. coli C08004492	8	16	9
CAT	35	TG, GAG, CAG, C			E. coli C08004525	8	16	9
CAT	35	TG, GAG, CAG, C			T. thermophilus C025937	8	16	9
CAT	34	AG, CTC, AAC, GGT, CAG, A			T. thermophilus C025955	9	23	15
CAT	35	A, GGT, GGT, CAG, A			T. thermophilus C025934	14	24	11
CAT	35	A, GTT, GGT, TA			E. coli C08004547	14	22	9
CAT	36	GC, CTG, GTC, AA			P. furiosus At1857	15	24	10
CAT	36	GC, CTG, GTC, A			P. furiosus At1855	15	23	9
CAT	35	GC, CTG, GTA, GC			E. coli C08004492	15	24	10
CAT	35	GC, CTG, GTA, GC			E. coli C08004525	15	24	10
CAT	35	GC, CTG, GTA, GC			T. thermophilus C025937	15	24	10
CAT	34	TA, GAG, CAG, GC			E. coli C08004495	20	29	10
CAT	34	TA, GAG, CAG, GC			E. coli C08004533	20	29	10
CAT	35	AG, CTC, GTC, GG			E. coli C08004492	22	31	10
CAT	35	AG, CTC, GTC, GG			E. coli C08004525	22	31	10
CAT	35	AG, CTC, GTC, GG			T. thermophilus C025937	22	31	10
CAT	35		AT,	AAT, GAT, GG	E. coli C08004547	36	45	10
CAT	34		т	A, ACC, GGT, A	T. thermophilus C025955	36	44	9
CAT	35			CC, GAA, GGT, C	E. coli C08004492	41	49	9
CAT	35			CC,GAA,GGT,C	T. thermophilus C025937	41	49	9
CAT	35			CC,GAA,GAT,C	E. coli C08004525	41	49	9
CAT	35			GT,GGT,GTC,GT	T. thermophilus C025934	42	51	10
CAT	35			AG, GTC, GTC, GGT, T	E. coli C08004492	45	56	12
CAT	35			AG, ATC, GTC, GGT, T	E. coli C08004525	45	56	12
CAT	34			TG, CAG, GTT, C	T. thermophilus C025955	48	56	9
CAT	36			CC, GAG, GTT, CA	P. furiosus At1846	50	59	10
CAT	34			G, CTG, GTT, CA	E. coli C08004495	49	57	9
CAT	34			G, CTG, GTT, CA	E. coli C08004533	49	57	9
CAT	36			G, TTC, GAA, GCC, C	P. furiosus At1857	55	65	11
CAT	34			AA, GTC, CAG, CAG, GG	E. coli C08004495	57	69	13
CAT	34			AA, GTC, CAG, CA	E. coli C08004533	57	66	10
CAT	36			AA, ATC, CTC, GGC, C	P. furiosus At1846	59	70	12
CAT	34			A, ATC, CTG, CA	T. thermophilus C025955	58	66	9
CAT	35			CC,GTC,GTA,GCC	E. coli C08004547	63	73	11
CAT	35			CC, ACC, GCC, GCC, ACC	T. thermophilus C025934	63	76	14

Table 4n

Identification of X circular code motifs Phe-tRNAXm in tRNAs of phenylalanine (Phe) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Phe	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
GAA	34	GCC, GAG, GTA, GC			T. thermophilus C025933	1	11	11
GAA	34	TG, GTA, GAG, CA			T. thermophilus C025933	17	26	10
GAA	34	G,GTA,GAG,CAG,GG			E. coli C08004519	18	29	12
GAA	34	G,ATT,	GAA,	AAT,C	E. coli C08004519	30	40	11
GAA	35			G,GGT,GTC,GG	P. furiosus At1845	43	51	9
GAA	34			GT, GTC, GGC, GGT, T	T. thermophilus C025933	44	55	12
GAA	34			CC, CTC, GGC, ACC	T. thermophilus C025933	65	75	11

Table 40

Identification of X circular code motifs Pro-tRNAXm in tRNAs of proline (Pro) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Pro	AC nos	5' region	AC	3' region	Organism ID	Start	End	Size
TGG	35	C,GGC,GAG,TA	110	0 108.011	E. coli C08004503	1	9	9
TGG	35	G, GGC, GTA, GC			T. thermophilus C025951	3	11	9
CGG	37	G, GCC, GTA, GG			P. furiosus At1870	3	11	9
TGG	37	G,GCC,GTA,GG			P. furiosus At1864	3	11	9
TGG	35	G, CAG, GCC, GGT, A			T. thermophilus C025951	12	22	11
GGG	35	GC, CTG, GTA, GC			E. coli C08004486	15	24	10
CGG	35	GC, CTG, GTA, GC			E. coli C08004520	15	24	10
GGG	35	GC, CTG, GTA, GC			T. thermophilus C025919	15	24	10
CGG	37	CC, ATC, CTG, C			P. furiosus At1870	22	30	9
TGG	37	CC,ATC,CTG,C			P. furiosus At1864	22	30	9
GGG	35	GC, ACC, GTC, AT			E. coli C08004486	25	34	10
CGG	35	AC, TTC, GTT,	С		E. coli C08004520	27	35	9
CGG	35	AC, CTC, GTT,	С		T. thermophilus C025931	27	35	9
TGG	35	AA, CTG, GTT,	т		E. coli C08004503	27	35	9
GGG	36	CC,GGC,CT	G,GG		P. furiosus At1866	29	38	10
CGG	37	G,GGC,TT	C,GG		P. furiosus At1870	31	39	9
GGG	35		G,G	GT,GTC,GG	E. coli C08004486	36	44	9
GGG	36		G,G	GC,GCC,GG	P. furiosus At1866	37	45	9
CGG	35		G,	GAC, GAA, GG	E. coli C08004520	37	45	9
CGG	35		G,	GAC, GAG, GG	T. thermophilus C025931	37	45	9
TGG	35		G,	GAG, CAG, GG	T. thermophilus C025951	37	45	9
GGG	35			G,GTC,GTC,GGT,T	T. thermophilus C025919	46	56	11
GGG	35			G, GAG, GTT, CA	E. coli C08004486	50	58	9
CGG	35			G, CTG, GTT, CA	T. thermophilus C025931	50	58	9
GGG	35			AA, ATC, CTC, T	E. coli C08004486	58	66	9
CGG	35			AA, ATC, CAG, T	T. thermophilus C025931	58	66	9
CGG	35			A, ATC, CTC, TA	E. coli C08004520	59	67	9
GGG	35			CC,GGC,CTC,C	T. thermophilus C025919	62	70	9
GGG	36			CC,GGC,GGC,C	P. furiosus At1866	63	71	9
CGG	37			CC,GGC,GGC,C	P. furiosus At1870	64	72	9
TGG	37			CC,GGC,GGC,C	P. furiosus At1864	64	72	9
TGG	35			T, CTC, GCC, GAC	E. coli C08004503	66	75	10

Table 4p

Identification of X circular code motifs SeC-tRNAXm in tRNAs of selenocysteine (SeC) in bacteria of E. coli.

AC SeC	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
TCA	35	AG,ATC,GTC,GTC,T			E. coli C08004496	4	15	12
TCA	35	CC,GGT,GAG,GC			E. coli C08004496	16	25	10
TCA	35	G,CTG,GAC,T	TC,A	A	E. coli C08004496	27	38	12
TCA	35		A	A,ATC,CAG,TT	E. coli C08004496	37	46	10
TCA	35			TG,ATC,TTC,C	E. coli C08004496	83	91	9

Table 4q

Identification of X circular code motifs Ser-tRNAXm in tRNAs of serine (Ser) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Ser	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
CGA	35	A, GAT, GCC, GG		ě l	E. coli C08004538	5	13	9
CGA	35	G, GGT, GCC, GG			T. thermophilus C025935	5	13	9
CGA	35	G, GTA, GCC, TA			P. furiosus At1829	6	14	9
GA	35	G, GTA, GCC, TA			P. furiosus At1839	6	14	9
GCT	35	G, GTA, GCC, TA			P. furiosus At1860	6	14	9
GCT	35	TG, GCC, GAG, A			E. coli C08004528	8	16	9
TGA	35	TG,GCC,GAG,C			E. coli C08004545	8	16	9
TGA	35	TG,GCC,GAG,C			T. thermophilus C025944	8	16	9
GCT	35	TG, GCC, GAG, T			T. thermophilus C025945	8	16	9
TGA	35	GC, CTG, GTA, GG			P. furiosus At1868	15	24	10
GCT	35	GC, CTG, GTA, GG			P. furiosus At1860	15	24	10
CGA	35	G, CTG, AAC, GG			E. coli C08004538	18	26	9
TGA	35	G, GTT, GAA, GGC, GGC, GGT, CT			T. thermophilus C025944	17	34	18
ГGA	35	G, GTT, GAA, GGC, ACC, GGT, CT			E. coli C08004545	17	34	18
CGA	35	G, GAA, GGC, GC			P. furiosus At1829	20	28	9
GGA	35	G, GAA, GGC, GC			P. furiosus At1839	20	28	9
GCT	35	T, GAA, GGC, GC			E. coli C08004528	20	28	9
GCT	35	TG, GTC, GAA, GGC, GGC, ACC, CT	G.CT		T. thermophilus C025945	16	37	22
GCT	35	AG, GGC, GCC, GGC, CT	G.CT		P. furiosus At1860	22	37	16
CGA	35	G. ACC. GGT. CT	C, GA	A.AAC.C	E. coli C08004538	26	42	17
GA	35	G. GCC. GGT. CT	C, GA	A, AAC, C	T. thermophilus C025935	26	42	17
CGA	35	A. CT	C, GA	G, ATC, C	P. furiosus At1829	32	42	11
GGA	35	G GGC CT	G.GA	G. A	P. furiosus At1839	29	39	11
GGA	35	GC CT	G.GA	A. A	E. coli C08004544	31	39	9
GGA	35	A CT	G.GA	A. ATC. GT	T. thermophilus C025950	32	43	12
ГGA	35	п, от Т	T.GA	A. AAC. C	E. coli C08004545	34	42	9
TGA	35	T	T.GA	A. AAC. C	T. thermophilus C025944	34	42	9
GA	35	a de la companya de la	-,	AA. ACC. GGT. A	T. thermophilus C025935	38	46	9
GCT	35			AA. GCC. GGT. GG	P. furiosus At 1860	38	47	10
GCT	35			AA. GGT. GTT. GC	T. thermophilus C025945	38	47	10
TGA	35			AA. ACC. GGC. GAC. C	E. coli C08004545	38	49	12
GGA	35			GT, GTA, TAC, GGC, AAC, GTA, T	E. coli C08004544	42	59	18
CGA	35			TG, GGC, GTT, C	P. furiosus At1829	45	53	9
GGA	35			TG, GGC, GTT, C	P. furiosus At1839	45	53	9
TGA	35			TG. GGC. GTT. T	P. furiosus At1868	45	53	9
GGA	35			G. TTC. GCC. CA	P furiosus At1839	50	58	9
TGA	35			GC, GAA, GCC, CA	T. thermophilus C025944	52	61	10
CGA	35			AA. CTC. TAC. C	E coli C08004538	54	62	9
GCT	35			AA, ACC, GGT, GCC, GC	T thermophilus C025945	55	67	13
GGA	35			TA, AAC, CTC, C	T. thermophilus C025950	55	63	9
GA	35			G. GGC. CTC. GC	T thermonhilus C025935	58	66	9
TGA	35			A GAG TTC GAA T	E coli C08004545	62	72	11
TGA	35				T thermonhilus C025944	76	87	12
GCT	35				T thermonhilus C025944	79	87	9
001	25				T thorm on hilus CO25945	00	00	0

than the anticodon GCA. The *X* motifs AA,AAC,CTC,CA and *Cys*-*tRNAXm*³ are shifted in frame, thus they are in a different frame than the anticodon GCA.

(iii) 3' regions of Cys-tRNAs: Two X motifs A,TTC,GCC,GGT,T and G, GCC,GGC,GCC,T are observed.

3.2.6. X circular code motifs in Gln-tRNAs (Table 4f)

- (i) 5' regions of Gln-tRNAs: The class of X motifs Gln-tRNAXm₁ G, GGY,RTC,GYC,WA is identified. The X motif GT,GGT,GTA,GC is shifted by +1 nucleotide from the class of X motifs G,GGY,GTC, GTC,TA belonging to Gln-tRNAXm₁. The X motif AA,GGC,ACC, GGT,TT occurs before the anticodon.
- (ii) Anticodon regions of Gln-tRNAs: The X motif G,ATT,CTG,ATT,C is in frame with the anticodon CTG. The X motif Gln-tRNAXm₂ TT,GAT,ACC,GGC,ATT,C is in a different frame than the anticodon TTG.

- (iii) 3' regions of Gln-tRNAs: The X motif CC,GCC,GGT,GGT,GGT,T and Gln-tRNAXm₂ are shifted in frame. Two classes of X motifs CC,SWG,GTT,C and A,ATC,CWS,GTA,C are observed.
- 3.2.7. X circular code motifs in Glu-tRNAs (Table 4g)
- (i) 5' regions of Glu-tRNAs: The X motif Glu-tRNAXm₁ CC,GGT,GGT, GTA,GCC,C is observed. The class of X motifs CC,WTC,GWC,TA is shifted by +2 nucleotides from Glu-tRNAXm₁. A very large X motif Glu-tRNAXm₂ TA,GAG,GCC,CAG,GAC,ACC,GCC,CT of 22 nucleotide in E. coli and Glu-tRNAXm₁ are shifted in frame. The X motif TA,GAG,GCC,TA is prefix of Glu-tRNAXm₂ and the X motif AG,GTC,ACC,GGC,CT is suffix of Glu-tRNAXm₂.
- (ii) 3' regions of Glu-tRNAs: The X motifs AA,GCC,GGC,GGC,GG and Glu-tRNAXm₃ AC,<u>GGC</u>,G<u>G</u>T,A<u>AC</u>,A occur after (3') the anticodon TTC. The class of X motifs A<u>G,GCC,GAR,AC</u> is shifted by +2 nucleotides from Glu-tRNAXm₃.

Table 4r

Identification of X circular code motifs Thr-tRNAXm in tRNAs of threonine (Thr) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Thr	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
GGT	35	CC,GGT,GGC,T			P. furiosus At1863	4	12	9
CGT	33	GCC, GGT, GTA, GC			T. thermophilus C025936	1	11	11
TGT	35	G, GTA, GCC, TA			P. furiosus At1865	6	14	9
TGT	34	AG, CTC, AAC, C			T. thermophilus C025958	9	17	9
GGT	34	T, CAG, CAG, GTA, GAG, CA			T. thermophilus C025961	12	26	15
GGT	35	GC, CTG, GTA, GAG, C			P. furiosus At1863	15	26	12
CGT	34	TG, GTA, GAG, CAG, C			E. coli C08004472	17	28	12
GGT	34	TG, GTA, GAG, C			E. coli C08004510	17	25	9
GGT	34	TG, GTA, GAG, C			E. coli C08004523	17	25	9
TGT	34	AG, GTA, GAG, CA			E. coli C08004507	17	26	10
CGT	33	G, GTA, GAG, CA			T. thermophilus C025936	17	25	9
CGT	33	GC,CT	C,GT	Α,Α	T. thermophilus C025936	29	37	9
CGT	34	Α,ΤΤ	C,GT	A, AT	E. coli C08004472	31	39	9
CGT	35	A, CT	C,GT	A, ATC, C	P. furiosus At1861	32	42	11
TGT	34	Т	T,GT	A, ATC, A	E. coli C08004507	33	41	9
TGT	35	Т	T,GT	A, ATC, C	P. furiosus At1865	34	42	9
TGT	34	Т	T,GT	A, ATC, GG	T. thermophilus C025958	33	42	10
TGT	34		GT,	AAT, CAG, TA	E. coli C08004507	35	44	10
GGT	34			AG, GGT, GAG, GTC, GCC, GGT, T	T. thermophilus C025961	38	55	18
GGT	34			AG, GGT, GAG, GTC, GGC, A	E. coli C08004510	38	52	15
GGT	34			AG, GGT, GAG, GTC, C	E. coli C08004523	38	49	12
CGT	34			GC, GAA, GGT, C	E. coli C08004472	40	48	9
TGT	34			A, GTA, GGT, CA	E. coli C08004507	41	49	9
CGT	35			CC, CAG, GTC, C	P. furiosus At1861	42	50	9
TGT	35			CC, CAG, GTC, GC	P. furiosus At1865	42	51	10
TGT	34			AG, GTC, ACC, A	E. coli C08004507	44	52	9
CGT	34			AG, GTC, GTA, GGT, T	E. coli C08004472	44	55	12
CGT	33			AG, GCC, GCC, GGT, T	T. thermophilus C025936	43	54	12
TGT	34			AC, CAG, TTC, GAT, T	E. coli C08004507	49	60	12
GGT	34			CC, CAG, TTC, GAC, T	E. coli C08004523	49	60	12
GGT	34			G, CAG, TTC, GAA, T	E. coli C08004510	50	60	11
TGT	34			CC, CTG, GGT, GGC, T	T. thermophilus C025958	62	73	12
GGT	34			T, CTG, GGT, ATC, A	E. coli C08004523	60	70	11
CGT	33			G,GCC,ACC,GGC,T	T. thermophilus C025936	62	72	11
CGT	34			T, ATT, ATC, GGC, ACC	E. coli C08004472	63	75	13
TGT	34			G, GTA, GTC, GGC, ACC	E. coli C08004507	63	75	13

Table 4s

Identification of X circular code motifs Trp-tRNAXm in tRNAs of tryptophan (Trp) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Trp	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
CCA	34	G,GGC,GTA,GTT,CA			E. coli C08004499	3	14	12
CCA	37	GT, GGT, GTA, GCC, T			P. furiosus At1854	7	18	12
CCA	34	AG, TTC, AAT, T			E. coli C08004499	9	17	9
CCA	34	AG, CTC, AAC, T			T. thermophilus C025938	9	17	9
CCA	37	GC, CTG, GTC, CA			P. furiosus At1854	15	24	10
CCA	34	TG,GTA,GAG,CA			E. coli C08004499	17	26	10
CCA	37	CC, ATC, ATC, GC			P. furiosus At1854	22	31	10
CCA	34	GC,ACC,GGT,CT	C,CA		E. coli C08004499	24	36	13
CCA	34	GC,ACC,GGT,CT	C,CA		T. thermophilus C025938	24	36	13
CCA	37	G,CT	C,CA	G,ACC,C	P. furiosus At1854	34	44	11
CCA	34			G,GGT,GTT,GG	E. coli C08004499	42	50	9
CCA	34			TG,GAG,GTT,C	T. thermophilus C025938	48	56	9
CCA	34			G,GAG,TTC,GAG,T	E. coli C08004499	50	60	11

Table 4t

Identification of X circular code motifs Tyr-tRNAXm in tRNAs of tyrosine (Tyr) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Tyr	AC pos	5' region	AC	3' region	Organism ID	Start	End	Size
GTA	36	G,GTA,GCC,TA			P. furiosus At1836	6	14	9
GTA	36	GC, CTG, GTA, GT			P. furiosus At1836	15	24	10
GTA	36	GT,GGC,GGC,GG			P. furiosus At1836	23	32	10
GTA	35	G,GAG,CAG,AC			E. coli C08004508	25	33	9
GTA	35	G,GAG,CAG,AC			E. coli C08004542	25	33	9
GTA	35	G,GAC,GGT,CT	G,TA		T. thermophilus C025959	26	37	12
GTA	35	Т,	GTA,	AAT, CTG, C	E. coli C08004508	34	44	11
GTA	35	Т,	GTA,	AAT, CTG, C	E. coli C08004542	34	44	11
GTA	35			AA, ACC, GTT, GGC, GTA, T	T. thermophilus C025959	38	52	15
GTA	35			T, GCC, GTC, ATC, GAC, TTC, GAA, GGT, T	E. coli C08004542	42	64	23
GTA	35			T,GCC,GTC,AC	E. coli C08004508	42	50	9
GTA	35			A, GAC, TTC, GAA, GGT, T	E. coli C08004508	51	64	14
GTA	35			AT, GCC, TTC, GC	T. thermophilus C025959	51	60	10

Table 4u

Identification of X circular code motifs Val-tRNAXm in tRNAs of valine (Val) in prokaryotes (bacteria E. coli and T. thermophilus, archaea P. furiosus).

AC Val	AC pos	5' region	AC	3' region	Organism ID	Start	End	I Siz€
TAC	34	G,GGT,GAT,TA			E. coli C08004475	1	9	9
TAC	35	G,GGC,GGC,TA			T. thermophilus C025924	1	9	9
CAC	33	G,GGC,GGC,TA			T. thermophilus C025949	1	9	9
TAC	34	T, CAG, CTG, GG			E. coli C08004475	12	20	9
TAC	35	T, CAG, CTG, GCC, A			T. thermophilus C025924	12	22	11
TAC	35	AG, CTG, GTT, AT			P. furiosus At1841	14	23	10
GAC	35	A, GTT, GGT, TA			E. coli C08004481	14	22	9
GAC	35	A, GTT, GGT, TA			E. coli C08004482	14	22	9
GAC	35	A,GGT,GGC,TA			T. thermophilus C025926	14	22	9
GAC	36	A, CTG, GTT, AT			P. furiosus At1835	16	24	9
CAC	36	A, CTG, GTT, AT			P. furiosus At1840	16	24	9
TAC	35	AT, GAC, GCC, GCC, CT			P. furiosus At1841	22	34	13
GAC	35	GC, ACC, ACC, TT			E. coli C08004481	25	34	10
GAC	35	GC, ACC, ACC, TT			E. coli C08004482	25	34	10
CAC	36	AT, GAC, GCC, GCC, CT	C,AC		P. furiosus At1840	23	38	16
GAC	36	AT, GAC, GCC, ACC, CT	G,AC		P. furiosus At1835	23	38	16
TAC	35	A, CTC, GCC, T	т		T. thermophilus C025924	27	35	9
TAC	35	Т,	TAC,	GAG, GC	P. furiosus At1841	34	42	9
CAC	33			A, GAG, GTC, GTA, GGT, T	T. thermophilus C025949	41	54	14
GAC	36			TG, GAG, GTC, C	P. furiosus At1835	43	51	9
TAC	35			A, GAG, GTT, CA	T. thermophilus C025924	50	58	9
TAC	34			G, GTC, GGC, GGT, T	E. coli C08004475	45	55	11
GAC	35			G,GTC,GTT,GGT,T	E. coli C08004481	46	56	11
GAC	35			G,GTC,GGT,GGT,T	E. coli C08004482	46	56	11
GAC	35			G,GTC,GGT,GGT,T	T. thermophilus C025926	46	56	11
TAC	35			AA, GTC, CTC, T	T. thermophilus C025924	58	66	9
TAC	34			CC, GTC, ATC, ACC, CA	E. coli C08004475	61	73	13
CAC	33			CC, TAC, GCC, GCC, CA	T. thermophilus C025949	60	72	13
TAC	35			T,GCC,GCC,CA	T. thermophilus C025924	66	74	9

3.2.8. X circular code motifs in Gly-tRNAs (Table 4h)

- (i) 5' regions of Gly-tRNAs: Several classes of X motifs are identified: GC,GGT,GGT,A, *Gly-tRNAXm*₁ G,GGC,RTM,GTW,YA, TG,GTA,GTC,TA suffix of *Gly-tRNAXm*₁, WY,AAT,GGY,W, GC,CTG, GTC,TA, G,GTA,GAR,C and AK,WAC,SWS,A. The two X motifs *Gly-tRNAXm*₂ AG,GAC,GCC,GGC,CT and *Gly-tRNAXm*₃ GC,ATC, GGC,CT occur before the anticodon TCC.
- (ii) Anticodon regions of Gly-tRNAs: The two X motifs AG,GAC, GCC,GGC,CTC,C whose prefix is Gly-tRNAXm₂ and GC,ATC,GGC, TTC,C whose prefix is Gly-tRNAXm₃ are in a different frame than the anticodon CCC. The X motif AG,GAC,GCC,ACC,CTG,C is in a different frame than the anticodon GCC. The class of X motifs R,GCC,TTC,CA is in a different frame than the anticodon TCC.
- (iii) 3' regions of Gly-tRNAs: The class of X motifs AA,GCC,GRS,GRY, C occurs after the anticodons CCC and TCC. Several X motifs are also found: TA,TAC,GAG,GGT,T, TG,GAG,ACC,C, GC,GAG,TTC, GAG,T, GT,CTC,GTT,T, CC,TTC,GCC,C and G,GCC,ACC,GC where no obvious relation could have been identified between them so far.

3.2.9. X circular code motifs in His-tRNAs (Table 4i)

- (i) 5' regions of His-tRNAs: Several classes of X motifs are identified: G,GGT,GGT,GTA,GCC,T, His-tRNAXm₁ RS,CTG,GTT,A, TG,GTA,GAG,C shifted in frame with His-tRNAXm₁ and A,GCC, CTG,GAT,T.
- (ii) 3' regions of His-tRNAs: The X motif His-tRNAXm₂ A,GTT,GTC, GT is shifted by +1 nucleotide from A,TTC,CAG,TT. The X motif CC,CTG,GCC,C is shifted in frame with His-tRNAXm₂.
- 3.2.10. X circular code motifs in Ile-tRNAs (Table 4j)
- (i) 5' regions of Ile-tRNAs: Several X motifs are identified: G,GGC, GAT,TA and Ile-tRNAXm₁ RS,C<u>TG,GT</u>Y,<u>A</u>. The X motif A,GG<u>T,GGT</u>, TA is shifted by +1 nucleotide from Ile-tRNAXm₁.

- (ii) 3' regions of Ile-tRNAs: A large X motif Ile-tRNAXm₂ AG,GGT, GAG,GTC,GGT,G<u>GT,T</u> of 18 nucleotides is identified in *E. coli*. A suffix of Ile-tRNAXm₂ of 15 nucleotides is found in *T.* thermophilus. The X motif <u>G,TTC,GAA,GCC,C</u> is shifted by +1 nucleotide from Ile-tRNAXm₂. The X motifs are observed: CC, AAC,ATC,GCC,CA and T,CAG,GCC,TAC.
- 3.2.11. X circular code motifs in Leu-tRNAs (Table 4k)
- (i) 5' regions of Leu-tRNAs: Several classes of X motifs are shifted in frame in series: GC,GAR,GRT,GGC,GG, R,GRT,GGY,GG, G,GTT, GCC,GAG,C, GT,GGC,GAA,ATY,GGT,A, a large X motif LeutRNAXm₁ TG,GAA,CTG,GTA,GAC,AC of 16 nucleotides in T. thermophilus, GC,CTG,GYC,AA, G,GTA,GAC,RC and AC,GCC,ATC, TT which occurs before the anticodon GAG.
- (ii) Anticodon regions of Leu-tRNAs: The X motif Leu-tRNAXm₂ AC, CAG,ATT,TA is in frame with the anticodon TAG. The class of X motifs G,ATT,SAG,GGT,C in frame with Leu-tRNAXm₂ except with its suffix TA of the anticodon TAG, is in frame with both the anticodons CAG and GAG. The X motifs AG,GTT,CTG,GC, AA, AAT,CTG,CTG,T and Leu-tRNAXm₃ AA,ATC,AAC,C are in frame with the anticodons TAG, CAA and CAA, respectively.
- (iii) 3' regions of Leu-tRNAs: The X motif Leu-tRNAXm₄ A,ACC,GTA, GAA,AT is shifted by +2 nucleotides from Leu-tRNAXm₃. Several classes of X motifs are shifted in frame: Leu-tRNAXm₄, CC,CTC,GGC,GTT,C, T,GGC,GCC,GC and SY,GGT,GCC,S. The X motif <u>GC</u>,GA<u>G,TT</u>C,AA is shifted by +1 nucleotide from GT,<u>GC</u>C, G<u>GT,T</u>. The X motifs GT,CTC,GCC,T and G,GCC,TTC,GGC,ACC are shifted in frame.
- 3.2.12. X circular code motifs in Lys-tRNAs (Table 41)
- (i) 5' regions of Lys-tRNAs: The X motif His-tRNAXm₁ T,CAG,CTG, GC is shifted by +1 nucleotide from AG,CTC,AAC,T. The X motifs His-tRNAXm₁, GC,CTG,GTT,A, AA,CTG,GTA,GAG,CA and HistRNAXm₂ TG,GTA,GAG,CAG,TT are shifted in frame.
- (ii) Anticodon regions of Lys-tRNAs: The class of X motifs <u>A,RYY</u>, GAC,TT which is in frame with the anticodon TTT, is shifted by

+1 nucleotide from *His-tRNAXm*₂. The *X* motif *His-tRNAXm*₃ TA, ATC,GGT,GG in *T. thermophilus* C025946 is in frame with the anticodon CTT.

(iii) 3' regions of Lys-tRNAs: Interestingly, the X motifs TA,ATC, GGT,A in T. thermophilus C025922 which is identical to HistRNAXm₃ (except its last letter) and TA,ATC,AAT,T occur after the anticodon TTT and are not involved in the anticodon of LystRNAs. Several classes of X motifs are observed: TG,GGT,TAC,A, CC,GGT,GGT,C, R,CAG,GTY,S and A,ATC,CTG,CA.

3.2.13. X circular code motifs in Met-tRNAs (Table 4m)

- (i) 5' regions of Met-tRNAs: Several classes of X motifs are shifted in frame: GGC,KRC,GTA,GC, TG,GAG,CAG,C and Met-tRNAXm1 AG,CTC,AAC,GGT,CAG,A. The X motif Met-tRNAXm2 A,GGT,GGT, CAG,A is suffix of Met-tRNAXm1. The X motif Met-tRNAXm3 A, GTT,GGT,TA is prefix of Met-tRNAXm2. The class of X motifs Met-tRNAXm4 GC,CTG,GTM,R is shifted by +2 nucleotides from Met-tRNAXm3 A,GTT,GGT,TA. The class of X motifs Met-tRNAXm4, TA,GAG,CAG,GC and AG,CTC,GTC,GG are shifted in frame.
- (ii) Anticodon regions of Met-tRNAs: The X motif AT,AAT,GAT,GC is in frame with the anticodon CAT. The X motif TA,ACC,GGT,A is in a different frame than the anticodon CAT.
- (iii) 3' regions of Met-tRNAs: Several classes of X motifs are shifted in series: CC,GGA,GRT,C, GT,GGT,GTC,GT, Met-tRNAXm₅ AG, RTC,GTC,GGT,T, Met-tRNAXm₆ S, SWG, GTT, Cshifted by +2 nucleotides from Met-tRNAXm₅, G,TTC,GAA,GCC,C shifted by +1 nucleotide from Met-tRNAXm₆, AA,GTC,CAG,CAG,GG, A,ATC, CTS,S, CC,GTC,GTA,GCC and CC,ACC,GCC,GCC,ACC.

3.2.14. X circular code motifs in Phe-tRNAs (Table 4n)

- (i) 5' regions of Phe-tRNAs: Two X motifs GCC,GAG,GTA,GC and G, GTA,GAG,CA are observed.
- (ii) Anticodon regions of Phe-tRNAs: The *X* motif G,ATT,GAA,AAT,C is in frame with the anticodon GAA.
- (iii) 3' regions of Phe-tRNAs: The X motifs G,GGT,GTC,GG and GT, GTC,GGC,GGT,T are shifted in frame. The X motif CC,CTC,GGC, ACC is observed.

3.2.15. X circular code motifs in Pro-tRNAs (Table 40)

- (i) 5' regions of Pro-tRNAs: Several classes of X motifs are shifted in series: S,GSC,GWR,K, Pro-tRNAXm₁ G,CAG,GCC,GGT,A, GC, CTG,GTA,GC shifted by +1 nucleotide from tRNAXm₁, CC,ATC, CTG,C and GC,ACC,GTC,AT.
- (ii) Anticodon regions of Pro-tRNAs: The class of X motifs ProtRNAXm₂ AM,YTS,GTT,Y is in frame with the anticodons CGG and TGG. The class of X motifs S,GGC,YTR,GG is in a different frame than the anticodons CGG and GGG. The class of X motifs G,GGY,GYC,GG is in a different frame than the anticodon GGG. The class of X motifs Pro-tRNAXm₃ G,GAS,SAR,GG is in frame with the anticodons CGG and TGG. The two classes of X motifs Pro-tRNAXm₂ and Pro-tRNAXm₃ may derive from an ancestral class of X motifs constructed by the concatenation of ProtRNAXm₂ and Pro-tRNAXm₃ AM,YTS,GTT,Y-A-G,GAS,SAR,GG of 19 nucleotides. Indeed, CAG belongs to X (Eq. (1)). Then, the nucleotide A in the middle site of CAG has mutated to G for building the anticodon CGG.
- (iii) 3' regions of Pro-tRNAs: The class of X motifs <u>G</u>,SW<u>G,GTT</u>,CA is shifted by +2 nucleotides from the X motif G,GTC,<u>GTC,GGT,T</u>. Several classes of X motifs are observed: A,ATC,CWS,T, CC,GGC, SKC,C and T,CTC,GCC,GAC.

Table 5

Coverage (Eq. (4)) of X circular code motifs in the 5' and 3' regions of tRNAs of prokaryotes (bacteria *E. coli* and *T. thermophilus*, archaea *P. furiosus*). The lengths and the anticodon positions are average values in each isoaccepting tRNA. The coverage of X motifs in the 5' and 3' regions of tRNAs is given in rounded percentage.

			Coverage of X motifs		
tRNA	Length	Anticodon position	5' regions (%)	3' regions (%)	
Ala	76	34	67	63	
Arg	77	35	97	88	
Asn	76	34	91	63	
Asp	78	36	80	23	
Cys	74	33	94	77	
Gln	75	34	85	77	
Glu	77	34	91	32	
Gly	76	35	100	95	
His	77	35	85	35	
Ile	77	35	62	93	
Leu	87	36	100	94	
Lys	78	34	76	69	
Met	77	35	91	98	
Phe	76	34	85	70	
Pro	78	36	100	93	
SeC	95	35	88	31	
Ser	89	35	88	92	
Thr	77	34	100	95	
Trp	77	35	94	57	
Tyr	83	35	85	59	
Val	78	35	94	90	
Mean	79	35	88	71	
Min	74	33	62	23	
Max	95	36	100	98	

3.2.16. X circular code motifs in SeC-tRNAs (Table 4p)

- (i) 5' regions of SeC-tRNAs: Two X motifs AG,ATC,GTC,GTC,T and CC,GGT,GAG,GC are observed.
- (ii) Anticodon regions of SeC-tRNAs: The X motif SeC-tRNAXm G, CTG,GAC,TTC,AA is in a different frame than the anticodon TCA. The X motif AA,ATC,CAG,TT shifted by +1 nucleotide from SeC-tRNAXm is also in a different frame than the anticodon TCA.
- (iii) 3' regions of SeC-tRNAs: One X motif TG,ATC,TTC,C is observed.

3.2.17. X circular code motifs in Ser-tRNAs (Table 4q)

- (i) 5' regions of Ser-tRNAs: Several classes of X motifs are shifted: R,GNW,GCC,KR, Ser-tRNAXm₁ TG,GCC,GAG,C, GC,CTG,GTA,GG shifted by +1 nucleotide from Ser-tRNAXm₁, G,CTG,AAC,GG, the class of large X motifs Ser-tRNAXm₂ G,GTT,GAA,GGC,RSC,GGT, CT of 18 nucleotides in T. thermophilus and E. coli and K,GAA, GGC,GC factor of Ser-tRNAXm₂.
- (ii) Anticodon regions of Ser-tRNAs: The very large X motif Ser-tRNAXm₃ TG,GTC,GAA,GGC,GGC,ACC,CTG,CT of 22 nucleotides in *T. thermophilus* is in a different frame than the anticodon GCT. The large X motif Ser-tRNAXm₄ AG,GGC,GCC,GGC,CTG,CT of 16 nucleotides in *P. furiosus* which is suffix of Ser-tRNAXm₃, is thus in a different frame than the anticodon GCT. The class of large X motifs Ser-tRNAXm₅ G,RCC,GGT,CTC,GAA,AAC,C of 17 nucleotides in *E. coli* and *T. thermophilus* is in a different frame than the anticodon CGA. The X motif A,CTC,GAG,ATC,C which is suffix of Ser-tRNAXm₅, is thus in a different frame than the anticodon CGA. The class of X motifs GC,CTG,GAR,A and A,CTG, GAA,ATC,GT which are shifted in frame, are in a different frame than the anticodon GGA. The X motif Ser-tRNAXm₆ TT,GAA, AAC,C is in a different frame than the anticodon TGA.
- (iii) 3' regions of Ser-tRNAs: The class of X motifs <u>AA,RSY</u>,GKY,R is shifted by +2 nucleotides from Ser-tRNAXm₆ TT,GA<u>A,AAC,C</u>, A large X motif Ser-tRNAXm₇ GT,GTA,TAC,GGC,AAC,GTA,T of 18

nucleotides is identified in *E. coli*. The *X* motif <u>G,TTC</u>,GCC,CA is shifted by +2 nucleotides from the class of *X* motifs TG,GGC, <u>GTT,Y</u>. Several classes of *X* motifs are observed: GC,GAA,GCC, CA, AA,MYC,KRY,S, R,RRS,YTC,S and YC,RCC,CTC,Y.

3.2.18. X circular code motifs in Thr-tRNAs (Table 4r)

- (i) 5' regions of Thr-tRNAs: Several classes of X motifs are shifted: CC,GGT,GKM,K, Thr-tRNAXm₁ G,GTA,GCC,TA, AG,CTC,AAC,C shifted by +2 nucleotides from Thr-tRNAXm₁, T,CAG,CAG, GTA,GAG,CA and its suffix G,GTA,GAG,C.
- (ii) Anticodon regions of Thr-tRNAs: The class of X motifs ThrtRNAXm₂ M,YTC,GTA,A is in a different frame than the anticodon CGT. The X motif Thr-tRNAXm₃ TT,GTA,ATC, shifted in frame with Thr-tRNAXm₂, is in a different frame than the anticodon TGT. Interestingly, the X motif <u>GT,AAT,CAG,TA</u> shifted by +1 nucleotide from Thr-tRNAXm₃ TT,<u>GTA,ATC</u>, is, in contrast, in frame with the anticodon TGT.
- (iii) 3' regions of Thr-tRNAs: The large X motif Thr-tRNAXm₄ AG, GGT,GAG,GTC,GCC,GGT,T of 18 nucleotides is identified in T. thermophilus. The class of X motifs AG,GGT,GAG,GTC,S is prefix of Thr-tRNAXm₄. Several classes of X motifs are observed: M, GWA,GGT,C, CC,CAG,GTC,S, AG,GYC,RYM,R, S,CAG,TTC,GAN,T, Y,CTG,GGT,RKC,W and K,RYN,RYC,GGC,W.

3.2.19. X circular code motifs in Trp-tRNAs (Table 4s)

- (i) 5' regions of Trp-tRNAs: The X motif <u>GT</u>,G<u>GT</u>,GTA,GCC,T is shifted by +1 nucleotide from G,GGC,<u>GTA,GTT</u>,C<u>A</u>. Several classes of X motifs are identified: AG,YTC,AAY,T, GC,CTG,GTC, CA, TG,GTA,GAG,CA and CC,ATC,ATC,GC.
- (ii) Anticodon regions of Trp-tRNAs: The X motif Trp-tRNAXm GC, ACC,GGT,CTC,CA is in a different frame than the anticodon CCA. The X motif G,CTC,CAG,ACC,C shifted in frame with TrptRNAXm, is also in a different frame than the anticodon CCA.
- (iii) 3' regions of Trp-tRNAs: The class of X motifs <u>TG,GAG,KTY,S</u> is shifted by +2 nucleotides from the X motif <u>G,GGT,GTT,GG</u>.

3.2.20. X circular code motifs in Tyr-tRNAs (Table 4t)

- (i) 5' regions of Tyr-tRNAs: The X motif G,GTA,GCC,TA is observed. The X motif <u>GT</u>,GGC,GGC,GG is shifted by +1 nucleotide from the X motif GC,CTG,GTA,<u>GT</u>. The X motif G,GAG,CAG,AC occurs before the anticodon GTA.
- (ii) Anticodon regions of Tyr-tRNAs: The X motif Tyr-tRNAXm₁ G, GAC,GGT,CTG,TA is in a different frame than the anticodon GTA. Interestingly, the X motif T,GTA,AAT,CTG,C shifted by +1 nucleotide from Tyr-tRNAXm₁ is, in contrast, in frame with the anticodon GTA.
- (iii) 3' regions of Tyr-tRNAs: The X motif <u>AA,ACC</u>,GTT,GGC,GTA,T is shifted by +2 nucleotides from the X motif T,GT<u>A,AAT</u>,<u>C</u>TG,C. A very large X motif *Tyr-tRNAXm*₂ T,GCC,GTC,ATC,GAC,TTC,GAA, GGT,T of 23 nucleotides is identified in *E. coli*. The X motif T, GCC,GTC,AC is prefix of *Tyr-tRNAXm*₂, the X motif A,GAC,TTC, GAA,GGT,T is suffix of *Tyr-tRNAXm*₂ and the X motif AT,GCC, TTC,GC is factor of *Tyr-tRNAXm*₂.

3.2.21. X circular code motifs in Val-tRNAs (Table 4u)

 (i) 5' regions of Val-tRNAs: Several classes of X motifs are shifted: G,GGY,GRY,TA, T,CAG,CTG,GS, Val-tRNAXm₁ <u>AG,CTG,GTT,AT, A,</u> <u>GTT,GGT,TA</u> shifted by +1 nucleotide from Val-tRNAXm₁, A,GGT, GGC,TA, Val-tRNAXm₂ A,CTG,GTT,<u>AT</u>, <u>AT</u>,GAC,GCC,GCC,CT shifted by +1 nucleotide from $Val-tRNAXm_2$ and GC,ACC,ACC, TT which occurs before the anticodon GAC.

- (ii) Anticodon regions of Val-tRNAs: The class of large X motifs Val-tRNAXm₃ AT,GAC,GCC,RCC,CTS,AC of 16 nucleotides identified in P. furiosus is in a different frame than the anticodons CAC and GAC. The X motif Val-tRNAXm₄ A,CTC,GCC,<u>TT</u> is in a different frame than the anticodon TAC. Interestingly, the X motif <u>T,TAC,GAG,GC</u> shifted by +2 nucleotides from ValtRNAXm₄ is, in contrast, in frame with the anticodon TAC.
- (iii) 3' regions of Val-tRNAs: Several classes of X motifs are observed: Val-tRNAXm₅ A,GAG,GTC,GTA,GGT,T, R,GAG,GTY,C prefix of Val-tRNAXm₅, G,GTC,GKY,GGT,T suffix of Val-tRNAXm₅, AA,GTC,CTC,T, CC,KWC,RYC,RCC,CA and T,GCC,GCC,CA.

3.2.22. Coverage of X motifs in the tRNAs (Table 5)

Table 5 shows that the coverage (Eq. (4)) of X motifs is greater in the 5' regions of tRNAs in *E. coli*, *T. thermophilus* and *P. furiosus* (mean equal to 88%, min equal to 62%, max equal to 100%) compared to their 3' regions (mean equal to 71%, min equal to 23%, max equal to 98%). The coverage of X motifs is maximal (100%) in the 5' regions of tRNAs of Gly, Leu, Pro and Thr and minimal (around 30%) in the 3' regions of tRNAs of Asp, Glu, His and SeC.

4. Conclusion

Seven X circular code motifs *PrRNAXm* which are conserved in 16S rRNAs of bacteria E. coli and T. thermophilus, and archaea P. *furiosus* are identified near the ribosome decoding center (Figs. 1– 3), in particular the large X motif PrRNAXm₁ GC,GGT,AAT,ACC,GGC, GGC,C of 18 nucleotides in P. furiosus, the large common X motif PrRNAXm₃ G,AAY,R₁CC,GR₂T,GGC,GAA,GGC of 19 nucleotides in E. coli and T. thermophilus, the large X motif PrRNAXm₄ TA,GAT,ACC, CTG,GTA,GTC,CA of 19 nucleotides in E. coli, the large common X motif PrRNAXm₆ T,TAC,GRC,CWG,GGC,KAC,AC of 18 nucleotides in E. coli and T. thermophilus (details in Section 3.1.1). Four X circular code motifs ErRNAXm which are conserved in 18S rRNAs of S. cerevisiae, T. aestivum and H. sapiens are found near the ribosome decoding center (Figs. 4-6), in particular the large common X motif ErRNAXm₂ G,NTC,GAA,GAY,GAT,CAG,AT of 18 nucleotides in S. cerevisiae, T. aestivum and H. sapiens and the large X motif ErRNAXm₄ TC,TTC,AAC,GAG,GAA,TTC,CT of 19 nucleotides in S. cerevisiae (details in Section 3.1.2).

The identification of X circular code motifs in tRNAs of E. coli, T. thermophilus and P. furiosus shows several new features for the structure of tRNAs. The high coverage of X motifs in the 5' and 3' regions of these tRNAs (88% and 71%, respectively; with the exception of the 3' regions of tRNAs of Asp, Glu, His and SeC; Table 5) means that tRNAs may be constructed by a concatenation of X motifs. This hypothesis is strengthened by the fact that four very large X motifs of length greater than or equal to 20 nucleotides are found in tRNAs having in average 79 nucleotides (Table 5): AlatRNAXm₁ GC,CTC,AAT,GGC,ATT,GAG,GAG,GTC,A of 24 nucleotides in T. thermophilus, Glu-tRNAXm2 TA,GAG,GCC,CAG,GAC,ACC,GCC,CT of 22 nucleotides in E. coli, Ser-tRNAXm₃ TG,GTC,GAA,GGC,GGC, ACC,CTG,CT of 22 nucleotides in T. thermophilus and Tyr-tRNAXm₂ T, GCC,GTC,ATC,GAC,TTC,GAA,GGT,T of 23 nucleotides in E. coli, and 14 large X motifs of lengths 16–19 nucleotides: Arg-tRNAXm₁, ArgtRNAXm₃, Arg-tRNAXm₄, Arg-tRNAXm₆, Asn-tRNAXm₃, AsptRNAXm₂, Ile-tRNAXm₂, Leu-tRNAXm₁, Ser-tRNAXm₂, Ser-tRNAXm₄, Ser-tRNAXm₅, Ser-tRNAXm₇, Thr-tRNAXm₄ and Val-tRNAXm₃. Remember that X motifs of lengths equal to 9 nucleotides retrieve the reading frame with a probability of 99.9% and X motifs of lengths greater than or equal to 12 nucleotides retrieve, by definition, the reading frame with a probability of 100% (Table 3 and Fig. 4 in Michel, 2012). We also note that the coverage and the length of the X motifs could be greater if substitutions in X motifs were considered.

We mention some of the properties of *X* motifs found in tRNAs (Section 3.2):

- (i) An X motif can occur at the same position in the same isoaccepting tRNA of different species, e.g. the X motif CAG, GAG,GTC is at position 40 in Ala-tRNA of E. coli and T. thermophilus (Table 4a), the X motif T,CAG,CTG,GAT,A is at position 12 in Arg-tRNA of E. coli and T. thermophilus (Table 4b), etc.;
- (ii) an X motif can occur at the same position in different isoaccepting tRNAs, e.g. the X motif T,CAG,CTG,G is at position 12 in Ala-tRNA of *E. coli*, Arg-tRNA of *E. coli* and *T. thermophilus*, His-tRNA of *T. thermophilus*, Ile-tRNA of *T. thermophilus* and Lys-tRNA of *T. thermophilus*, Val-tRNA of *E. coli* and *T. thermophilus* (Table 4a,b,i,j,l,u), the X motif GTA,GTT,CAG is at the same position 7 in Arg-tRNA, Asn-tRNA, Asp-tRNA, GlytRNA, Trp-tRNA of *E. coli* (Table 4b-d,h,s), etc.;
- (iii) an X motif can be shifted by 0, +1 or +2 mod 3 nucleotides from another X motif in the same species or in different species;
- (iv) an X motif can be in the same frame as the anticodon, e.g. the very large X motif Ala-tRNAXm₁ GC,CTC,AAT,GGC,ATT,GAG, GAG,GTC,A of 24 nucleotides in Ala-tRNA of T. thermophilus is in frame with the anticodon GGC (Table 4a), the X motif G,ATT, CTG,ATT,C in Gln-tRNA of E. coli is in frame with the anticodon CTG (Table 4f), etc.;
- (v) an X motif can be in a different frame than the anticodon with a shift of one nucleotide, e.g. the X motif Cys-tRNAXm₃ A,CTG, CAG,ATC,C in Cys-tRNA of P. furiosus is shifted by +1 nucleotide relative to the anticodon GCA (Table 4e), etc.;
- (vi) an X motif can be in a different frame than the anticodon with a shift of two nucleotides, e.g. the large X motif Arg-tRNAXm₆ A,GTA,CTC,GGC,T<u>AC,G</u>AA,C of 17 nucleotides in Arg-tRNA of *E. coli* is shifted by +2(-1) nucleotides relative to the anticodon ACG (Table 4b), etc.

The X circular code motifs containing the universally conserved nucleotides G530, A1492 and A1493 in rRNAs of the ribosome decoding center (Michel, 2012; El Soufi and Michel, 2014) and the X circular code motifs described here in rRNAs near the ribosome decoding center and in tRNAs allow pairing with the X circular code motifs of mRNAs. Indeed, the *X* motifs have the circular code property for retrieving the reading frame, the C^3 property for retrieving the two shifted frames and the complementary property for pairing. The results obtained here strengthen the concept of translation code based on the circular code proposed in Michel (2012).

Acknowledgment

The first author thanks the Lebanese Association for Scientific Research (LASeR) for funding.

References

- Anger, A.M., Armache, J.P., Berninghausen, O., Habeck, M., Subklewe, M., Wilson, D. N., Beckmann, R., 2013. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85.
- Armache, J.P., Anger, A.M., Marquez, V., Franckenberg, S., Frohlich, T., Villa, E., Wilson, D.N., 2013. Promiscuous behaviour of archaeal ribosomal proteins: implications for eukaryotic ribosome evolution. Nucleic Acids Res. 41, 1284–1293.
- Armache, J.P., Jarasch, A., Anger, A.M., Villa, E., Becker, T., Bhushan, S., Beckmann, R., 2010a. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc. Natl. Acad. Sci. U. S. A. 107, 19748–19753.
- Armache, J.P., Jarasch, A., Anger, A.M., Villa, E., Becker, T., Bhushan, S., Beckmann, R., 2010b. Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl. Acad. Sci. U. S. A. 107, 19754–19759.
- Arquès, D.G., Michel, C.J., 1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45–58.
- Brilot, A.F., Korostelev, A.A., Ermolenko, D.N., Grigorieff, N., 2013. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl. Acad. Sci. U. S. A. 110, 20994–20999.
- Gogala, M., Becker, T., Beatrix, B., Armache, J.P., Barrio-Garcia, C., Berninghausen, O., Beckmann, R., 2014. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506, 107–110.
- El Soufi, K., Michel, C.J., 2014. Circular code motifs in the ribosome decoding center. Comput. Biol. Chem. 52, 9–17.
- Jenner, L.B., Demeshkina, N., Yusupova, G., Yusupov, M., 2010. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560.
- Michel, C.J., 2012. Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes. Comput. Biol. Chem. 37, 24–37.
- Michel, C.J., 2013. Circular code motifs in transfer RNAs. Comput. Biol. Chem. 45, 17–29.
- Michel, C.J., 2015. The maximal C³ self-complementary trinucleotide circular code X in genes of bacteria eukaryotes, plasmids and viruses. J. Theor. Biol. 380, 156–177.
- Wilson, D.N., 2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48.