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Abstract Comma-free codes constitute a class of circular codes, which has been
widely studied, in particular by Golomb et al. (Biologiske Meddelelser, Kongelige
Danske Videnskabernes Selskab 23:1–34, 1958a, Can J Math 10:202–209, 1958b),
Michel et al. (Comput Math Appl 55:989–996, 2008a, Theor Comput Sci 401:17–26,
2008b, Inf Comput 212:55–63, 2012), Michel and Pirillo (Int J Comb 2011:659567,
2011), and Fimmel and Strüngmann (J Theor Biol 389:206–213, 2016). Based on
a recent approach using graph theory to study circular codes Fimmel et al. (Phi-
los Trans R Soc 374:20150058, 2016), a new class of circular codes, called strong
comma-free codes, is identified. These codes detect a frameshift during the trans-
lation process immediately after a reading window of at most two nucleotides. We
describe several combinatorial properties of strong comma-free codes: enumeration,
maximality, self-complementarity and C F3-property (comma-free property in all the
three possible frames). These combinatorial results also highlight some new proper-
ties of the genetic code and its evolution. Each amino acid in the standard genetic
code is coded by at least one strong comma-free code of size 1. There are 9 amino
acids S = {Asn, Asp, Gln, Gly, Lys, Met, Phe, Pro, T r p} among 20 such that for
each amino acid from S, its synonymous trinucleotide set (excluding the necessary
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periodic trinucleotides {AAA, CCC, GGG, T T T }) is a strong comma-free code. The
primeval comma-free RNY code ofEigen andSchuster (Naturwissenschaften 65:341–
369, 1978) is a self-complementary C F3-code of size 16. Furthermore, it is the union
of two strong comma-free codes of size 8 which are complementary to each other.

Keywords Strong comma-free codes · Enumeration · Maximality ·
Self-complementarity · C F3-property · Genetic code

1 Introduction

The main class of trinucleotide codes, which is involved in the genetic code, are the
circular codes and their proper subsets. About 60 years ago, before the discovery of
the genetic code, proper subsets of circular codes, called comma-free codes, were
proposed by Crick et al. (1957) for explaining how the reading of a sequence of
trinucleotides could code the 20 amino acids. In particular, how the correct reading
frame can be retrieved and maintained. The four nucleotides {A, C, G, T } as well
as the 16 dinucleotides {AA,…,TT} are simple codes, which are not appropriate for
coding the 20 amino acids. However, trinucleotides induce a redundancy in their
coding. Thus, Crick et al. (1957) conjectured that only 20 trinucleotides among the
64 possible trinucleotides {AAA,. . .,TTT} code the 20 amino acids. Such a bijective
code implies that the coding trinucleotides are found only in one frame—the comma-
freeness property. Thedetermination of a set of 20 trinucleotides forming a comma-free
code has several necessary conditions:

(i) A periodic trinucleotide from the set {AAA, CCC, GGG, TTT} must be excluded
from such a code. Indeed, the concatenation of AAA with itself, for instance, does
not allow the (original) reading frame to be retrieved as there are three possible
decompositions: . . .AAA, AAA, AAA. . . (original frame), . . .A, AAA, AAA, AA. . .

and . . .AA, AAA, AAA, A. . ., the commas showing the adopted decomposition.
(ii) Two non-periodic permuted trinucleotides, i.e., two trinucleotides related by a

circular permutation, e.g., ACG and CGA, must also be excluded from such
a code. Indeed, the concatenation of ACG with itself, for instance, does not
allow the reading frame to be retrieved as there are two possible decompositions:
. . .ACG, ACG, ACG. . . (original frame) and . . .A, CGA, CGA, CG. . .

Therefore, by excluding the four periodic trinucleotides and by gathering the 60
remaining trinucleotides in 20 classes of three trinucleotides such that, in each class,
the three trinucleotides are deduced from each other by a circular permutation, e.g.,
ACG, CGA and GAC, we see that a comma-free code can contain only one trinu-
cleotide from each class and thus has at most 20 trinucleotides. This trinucleotide
number is identical to the amino acid number, thus leading to a code assigning one
trinucleotide per amino acid without ambiguity. A few combinatorial results on trin-
ucleotide comma-free codes were obtained by Golomb et al. (1958a, b). However, no
trinucleotide comma-free code was identified in genes statistically. Furthermore, at
the beginning of the 1960s, the discovery that the trinucleotide TTT (Nirenberg and
Matthaei 1961), an excluded trinucleotide in a comma-free code, codes phenylalanine,
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1798 E. Fimmel et al.

led to the abandonment of the concept of comma-freeness. For several biological rea-
sons, in particular the interaction between mRNA and tRNA, this concept was again
taken up later with two trinucleotide comma-free codes: RRY (Crick et al. 1976)
and RNY={RRY, RYY} (Eigen and Schuster 1978; Shepherd 1981) with R = {A, G},
Y = {C, T} and N = {A, C, G, T}.

The circular code theory initiated in 1996 proposes that genes are based on a circu-
lar code of 20 trinucleotides for retrieving, maintaining and synchronizing the reading
frame as well as for coding amino acids (Michel 2012). It relies on twomain results: (i)
the identification of a maximal (20 words) C3 self-complementary trinucleotide cir-
cular code X in genes of bacteria (15, 735, 053 genes, 5, 222, 267, 667 trinucleotides),
archaea (282, 802 genes, 81, 460, 549 trinucleotides), eukaryotes (4, 356, 391 genes, 2,
406, 844, 838 trinucleotides), plasmids (575, 760 genes, 159, 169, 387 trinucleotides)
and viruses (299, 401 genes, 66, 677, 580 trinucleotides) (Michel 2017, 2015; Arquès
and Michel 1996) and (ii) the finding of X circular code motifs in tRNAs and rRNAs,
in particular in the ribosome decoding center (Michel 2012; El Soufi andMichel 2014,
2015), and in the genomes of eukaryotes (El Soufi and Michel 2016). The universally
conserved nucleotides A1492 and A1493 and the conserved nucleotide G530 in the
ribosome decoding center are included in X circular code motifs.

The circular code X contains the 20 following trinucleotides

X = {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC,

GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC}

and codes the 12 amino acids

{Ala, Asn, Asp, Gln, Glu, Gly, I le, Leu, Phe, T hr, T yr, V al}.

A trinucleotide circular code has the fundamental property to always retrieve the
reading frame in any position of any sequence generated with the circular code. In par-
ticular, initiation and stop trinucleotides as well as any frame signals are not necessary
to define the reading frame. Indeed, a window of a few nucleotides, whose nucleotide
length depends on the class of circular codes, positioned anywhere in a sequence gen-
erated with the circular code always retrieves the reading frame (see, e.g., the example
given in Fimmel et al. 2016). At most 13 consecutive nucleotides in any sequence
generated by the circular code X are enough to always retrieve the reading frame. In
a trinucleotide comma-free code, this window is equal to three nucleotides.

The combinatorial properties of comma-free codes and circular codes are important
to understand some properties of the genetic code and its encoded amino acids as well
as its evolution. Based on a recent approach using graph theory to study circular codes
(Fimmel et al. 2016), a new class of circular codes, called strong comma-free codes,
is identified. The class of strong comma-free codes is a proper subclass of the class of
comma-free codes. The advantage of strong comma-free codes is that two consecutive
nucleotides suffice for retrieving the correct reading frame in any sequence generated
by the code.
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We first describe several combinatorial properties of strong comma-free codes.
Then, the combinatorial results obtained highlight some new properties of the genetic
code and its evolution.

2 Notations and Definitions on Circular and Comma-Free Codes

We start by recalling notations and definitions that will be needed in the sequel. Let
us denote the nucleotide 4-letter alphabet by B := {A, C, G, T } where A stands for
adenine, C stands for cytosine, G stands for guanine and T stands for thymine. Thus,
B3 is the set of the 64 trinucleotides (codons or triletters), and the genetic code table
can be seen as an assignment between B3 and the set of the 20 amino acids plus the
stop signal. It had turned out in Fimmel et al. (2014) that the symmetric group on
the set B plays an important role when describing error-detecting and error-correcting
subcodes of B3. Recall that the symmetric group is defined as

SB = {π : B → B | π is bijective}

with the usual group operation given by composition of functions. The group SB has
24 elements, and any bijective mapping π : B → B can be applied componentwise
to x ∈ B3 and thus induces a bijective map B3 → B3 which we will also denote
by π . Regarding the complementary structure of the DNA double helix, the so-called
Strong/Weak (SW) or complementary (c) transformation from SB

SW (or c) : (A, T, C, G) → (T, A, G, C)

which exchanges A and T as well as C and G, plays an important biological role.
A second symmetric group used in the following sections is the group (S3, ◦), the
symmetric group on the three numbers 1, 2 and 3, where

S3 := {α : {1, 2, 3} → {1, 2, 3} | α is bijective}

and◦denotes the compositionofmappings. For instance, (132) ∈ S3 is the permutation
such that 1 �→ 3, 2 �→ 1, 3 �→ 2. Clearly, any such α induces a mapping on the set of
trinucleotides B3 by permuting the order of the bases in the trinucleotides, e.g., (132)
transforms a trinucleotide (b1, b2, b3) to the trinucleotide (b3, b1, b2). Hence, given a
subset X ⊆ B3 and a transformation π : B3 → B3, π(X) is the set of trinucleotides
that are base transformations of triletters from X , whereas α(X) with α ∈ S3 contains
the triletters that are obtained by permutations of the positions of bases in trinucleotides
from X . As we will show below, this difference plays a crucial role from the biological
point of view, e.g., by transformations from S3 one can obtain the different frames of
a code. Let us focus on the subgroup of cyclical permutations of (S3, ◦) denoted by

A3 := {α0 = (1)(2)(3), α1 = (231), α2 = (312)} ⊂ S3.

(A3, ◦) is known as the alternating subgroup of (S3, ◦) and contains the two shift
operations α1 and α2. However, it does not contain the second important biologi-
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cal transformation related to the antiparallel structure of the DNA double helix: the
reversing permutation of the indices (31)(2). We will indicate this permutation by ←−
so that a given trinucleotide x = (b1, b2, b3) ∈ B3 leads to ←−x := (b3, b2, b1). Obvi-
ously, for a trinucleotide (codon) x ∈ B3 the reversed complementary trinucleotide

(anticodon) can now be described as
←−−
c(x). We are now in the position to recall the

definitions of self-complementarity, circularity (C3-property), and comma-freeness of
codes X ⊆ B3.

Definition 2.1 A trinucleotide code X ⊆ B3 is self-complementary if for each trin-

ucleotide x ∈ X its reversed complementary trinucleotide
←−−
c(x) also belongs to X :

x ∈ X ⇔ ←−−
c(x) ∈ X. We will also use the notation X = ←−−

c(X).

As described in the introduction, there are two classes of codes that allow to detect
frameshifts in the reading process of the ribosome and that have been studied recently.

Definition 2.2 A trinucleotide code X ⊆ B3 is comma-free if given any two trinu-
cleotides x1, x2 ∈ X , any trinucleotide from the concatenation x1x2, except x1, x2
themselves, does not belong to X .

Recall that comma-free codes allow to retrieve the correct frame with at most three
nucleotides.

Definition 2.3 A trinucleotide code X ⊆ B3 is circular if any word over the alphabet
B written on a circle has at most one decomposition into words from X , i.e., after the
last letter the word starts again from its first letter. A trinucleotide circular code X is
called maximal if it contains 20 trinucleotides (i.e., |X | = 20).

Circular codes have weaker error-detecting properties than comma-free codes since
they need at most 13 nucleotides to retrieve the correct reading frame. The maximal
circular code found by Arquès and Michel (1996) even allows to retrieve the correct
frame in the two shifted frames.

Definition 2.4 A trinucleotide code X ⊆ B3 is a C3-code if X as well as X1 and X2
are circular, where X1 := α1(X) and X2 := α2(X). Similarly, a trinucleotide code
X ⊆ B3 is C F3-code if X , as well as X1 and X2 are comma-free, where X1 := α1(X)

and X2 := α2(X).

In Fimmel et al. (2016), the three authors had introduced a new graph theoretical
approach which relates a directed graph to any trinucleotide code. Recall from graph
theory (Clark andHolton 1991) that a graphG consists of a finite set of vertices (nodes)
V and a finite set of edges E . Here, an edge is a set {v,w} of vertices from V . The
graph is called oriented if the edges have an orientation, i.e., edges are considered to
be ordered pairs [v,w] in this case.
Definition 2.5 Let X ⊆ B3 be a trinucleotide code. We define a directed graph
G(X) = (V (X), E(X)) with set of vertices V (X) and set of edges E(X) as follows:

• V (X) = {{N1, N2N3, N1N2, N3} : N1N2N3 ∈ X}
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Strong Comma-Free Codes in Genetic Information 1801

Fig. 1 The associated graph
G(X) of the trinucleotide
circular code X = {AT C, CT C,

G AA, G AT, GGT, GT C, T AC}
(Color figure online)

• E(X) = {{[N1, N2N3], [N1N2, N3]} : N1N2N3 ∈ X}.
The graph G(X) is called graph associated to X .

The main results from Fimmel et al. (2016) stated that (i) a trinucleotide code X is
circular if and only if its associated graph G(X) is acyclic, i.e., does not contain any
cycles, and (ii) a trinucleotide code X is comma-free if and only if its graph G(X) is
acyclic and the maximal length of a path in G(X) is at most 2.

Example 2.6 Figure 1 gives a trinucleotide circular code X and its associated graph
G(X).

Motivated by the graph approach, we define a new class of codes.

Definition 2.7 A trinucleotide code X ⊆ B3 is called strong comma-free code if its
associated graph G(X) has only oriented paths of length 1. A trinucleotide strong
comma-free code X is of maximal size if there is no trinucleotide strong comma-free
code X ′ with |X ′| > |X |.

It is easily seen that strong comma-free codes have a stronger error-detecting prop-
erty than comma-free codes in the sense that they can retrieve the correct reading frame
within at most 2 nucleotides while comma-free codes need 3 nucleotides in general.

Example 2.8 Figure 2 gives a strong comma-free code X and its associated graph
G(X).

We would like to remark that even a single trinucleotide (code of size 1) may not
be strong comma-free. This is obviously true for trinucleotides of the form N N N but
also for those of the form N M N since they yield a path N M → N → M N , i.e., a
path of length 2.

Example 2.9 Figure 3 displays two graphs G(X) associated with two trinucleotide
codes X of size 1, one code X which is not strong comma-free and one code X which
is strong comma-free.
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Fig. 2 The associated graph
G(X) of the strong comma-free
code X = {AAC, AGC, AT C,

G AC, GGC, GT C, T AC, T GC,

T T C} (Color figure online)

Fig. 3 The associated graphs G(X) of a the non-strong comma-free code {AC A} and b the strong comma-
free code {GCT } (Color figure online)
3 Properties and Classification of Strong Comma-Free Codes

In this section, we completely classify the strong comma-free codes of maximal size
as well as those that are self-complementary. Moreover, we give the growth function
of strong comma-free codes and some handy criteria to test strong comma-freeness.

3.1 Combinatorial Properties of Strong Comma-Free Codes

We first aim for some criteria for testing strong comma-freeness. Let us start with a
technical definition that will also be helpful to determine the structure of certain strong
comma-free codes in the next sections.
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Definition 3.1 We will denote by πi (i = 1, 2, 3) the projection πi : B3 → B which
assigns to each trinucleotide x = N1N2N3 ∈ B3 its i th coordinate Ni ∈ B. Moreover,
for a subset X ⊆ B3, the image πi (X) ⊆ B of X under πi denotes the set of all i th
coordinates of the elements of X .

Note that for any subset X ⊆ B3, the sets π1(X), π2(X) and π3(X) can contain
at most 4 elements. For instance, π1(CCG) = C , π2(T G A) = G, π3(T AG) = G
and π1({CCG, T G A, G AA, GT C, T CT }) = {C, G, T }. While in general, the sets
πi (X) may not be disjoint for a code X , a strong comma-free code forces disjointness
of the first and last coordinates.

Lemma 3.2 Let X ⊆ B3 be a trinucleotide strong comma-free code. Then π1(X) ∩
π3(X) = ∅.

Proof Let us assume that U = π1(X) ∩ π3(X) = ∅ and assume that N1 ∈ U . Then
N1X1Y1, X2Y2N1 ∈ X for some X1, X2, Y1, Y2 ∈ B. Hence, there is an oriented path
of length at least 2 in the associated graph G(X), namely X2Y2 → N1 → X1Y1, and
thus, X is not strongly comma-free—a contradiction. ��

The converse in the above Lemma 3.2 is false as the following example shows.

Example 3.3 Let X = {AAC, ACC}. Then π1(X)∩π3(X) = ∅ but X is not a strong
comma-free code since its associated graph G(X) has an oriented path of length 2:
A → AC → C .

Lemma 3.2 shows that strong comma-freeness is a stronger property than comma-
freeness since the condition π1(X) ∩ π3(X) = ∅ is necessary for strong comma-free
codes but already sufficient for being comma-free. Precisely, the following statement
is true (compare also Lemma 4.4 in Fimmel and Strüngmann 2015).

Lemma 3.4 Let X ⊆ B3 be a trinucleotide code. If π1(X) ∩ π3(X) = ∅ or π1(X) ∩
π2(X) = ∅ or π2(X) ∩ π3(X) = ∅, then X is comma-free.

Proof Without loss of generality, we assume that X ⊆ B3 is a trinucleotide code such
that π1(X) ∩ π3(X) = ∅ since the two other cases are symmetric. Let t1 = X1X2X3
∈ X and t2 = Y1Y2Y3 ∈ X be two trinucleotides of X and consider the concatenation
X1X2X3Y1Y2Y3. Obviously, X2X3Y1 /∈ X since Y1 /∈ π3(X) and X3Y1Y2 /∈ X since
X3 /∈ π1(X). Thus, X is comma-free. ��

However, the condition π1(X) ∩ π3(X) = ∅ (as well as the two other conditions)
is not necessary for comma-freeness as we demonstrate next. Nevertheless, note that
for strong comma-free codes we do not need to have π1(X) ∩ π2(X) = ∅ or π2(X) ∩
π3(X) = ∅. Therefore, we now focus on the condition π1(X)∩π3(X) = ∅. However,
we will come back to codes satisfying one of the disjointness conditions from Lemma
3.4 in Sect. 3.4.

Example 3.5 The code X = {C AG, GT C} is obviously comma-free but π1(X) ∩
π3(X) = ∅.
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Putting Lemmas 3.2 and 3.4 together, we see that the class of strong comma-free
codes is strictly contained in the class of all codes satisfying π1(X) ∩ π3(X) = ∅,
which is again strictly contained in the class of comma-free codes:

X strong comma-free ⇒ π1(X) ∩ π3(X) = ∅ ⇒ X comma-free.

We aim now for a sufficient condition for strong comma-freeness.

Lemma 3.6 Let X ⊆ B3 be a trinucleotide code such that π1(X) ∩ π3(X) = ∅. If
in addition one of the two conditions π1(X) ∩ π2(X) = ∅ or π2(X) ∩ π3(X) = ∅ is
satisfied, then X is strong comma-free.

Proof Let X ⊆ B3 be a trinucleotide code. There are twopossibilities to get an oriented
path of length at least 2 in the associated graph G(X) : N1N2 → N3 → N ′

2N ′
3 or

N1 → N2N3 → N ′
3 where Ni , N ′

i ∈ B. The first possibility is excluded by the
condition π1(X)∩π3(X) = ∅ and the second one by each of the additional conditions
π1(X) ∩ π2(X) = ∅ or π2(X) ∩ π3(X) = ∅. ��

Again, the converse direction in Lemma 3.6 does not hold:

Example 3.7 Let X = {AAC, AT G, AGC}. X is a strong comma-free code but
π1(X) ∩ π2(X) = ∅ and π2(X) ∩ π3(X) = ∅.

Now we focus on the question how symmetrical transformations of a given code
affect its strong comma-freeness. As for circular or comma-free codes (Fimmel
et al. 2014), cyclical permutations of a trinucleotide strong comma-free code X
do not preserve strong comma-freeness in general. In fact, the four permutations
of the letters α ∈ S3 \ {id,←−} (except the identical and reversing permutations)
do not guarantee comma-freeness of α(X). Let us denote the four permutations by
α1 = (231), α2 = (312), p1 = (132) and p2 = (213), and consider the following
code X = {ACC, AAG} with α1(X) = {CC A, AG A}, α2(X) = {C AC, G AA},
p1(X) = {ACC, AG A} and p2(X) = {C AC, AAG}. According to Lemma 3.2, the
code X is strong comma-free, but none of the codes α1(X), α2(X), p1(X), p2(X) are
strong comma-free. However, by reversing each trinucleotide of a strong comma-free
code, the reversed code is also strong comma-free code (obvious check).

Moreover, any transformation π ∈ SB turns a graph G(X) associated with a trinu-
cleotide code X naturally into an isomorphic graph G(π(X)) of the image code π(X).
Thus, if G(X) has no path longer than one edge, i.e., X is strong comma-free, then this
also holds for G(π(X)), and hence, π(X) is strong comma-free. The theorem below
collects these facts.

Theorem 3.8 Let X ⊆ B3 be a trinucleotide strong comma-free code. Then, the
following statements are true.

(1) The identical and reversing permutations are the sole permutations of the posi-
tions of trinucleotide letters which preserve strong comma-freeness of a code.

(2) For every π ∈ SB, π(X) is a also a trinucleotide strong comma-free code.

Proof Clear. ��
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The above Theorem 3.8 gives an easy way to construct new strong comma-free codes
once a strong comma-free code X is given, just by applying the 24 bijective transfor-
mations π from SB. However, some of the new codes π(X) may coincide. Also, an
important property of complementary codes related to the DNA double helix follows
as an immediate consequence of Theorem 3.8.

Corollary 3.9 Let X ⊆ B3 be a trinucleotide strong comma-free code. Then the

complementary code
←−−
c(X) of X is also strong comma-free.

Proof Follows from Theorem 3.8. ��
In the next subsections, we will investigate strong comma-free codes of maximal

size and their structure, self-complementary strong comma-free codes and so-called
C F3-codes.

3.2 Strong Comma-Free Codes of Maximal Size

A computer calculation determined the numbers of strong comma-free codes of car-
dinalities 1–9. This growth function is given in Table 1. We will prove in Theorem
3.11 that 9 is the maximal size of a strong comma-free code.

We first explain the first row of Table 1. Recall from the first section that the
trinucleotides of the form N M N cannot belong to a strong comma-free code.

Lemma 3.10 The number of trinucleotide strong comma-free codes of size 1 is 48.

Proof According to Lemma 3.2, the necessary condition for the codes with a single
trinucleotide is at the same time the sufficient one. Thus, we have four possibilities
to choose the first nucleotide and three possibilities for the third one, and the sec-
ond nucleotide can be chosen arbitrarily. Consequently, there are 4 × 3 × 4 = 48
trinucleotide strong comma-free codes of size 1. ��

Now we describe all the trinucleotide strong comma-free codes of maximal cardi-
nality explaining the last row of Table 1.

Table 1 Growth function
(numbers) of trinucleotide
strong comma-free codes of
cardinalities 1–9

Cardinality Number

1 48

2 564

3 2432

4 4968

5 5424

6 3288

7 1080

8 168

9 8
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Theorem 3.11 All trinucleotide strong comma-free codes of maximal size have the
following form

X = {N1Y Z | Z , Y ∈ B \ {N1}} or X = {Y Z N1| Z , Y ∈ B \ {N1}}

for some N1 ∈ B. In particular, the maximal size of a strong comma-free code is 9, and
there are exactly 8 trinucleotide strong comma-free codes of this maximal cardinality.

Proof Clearly, codes of the stated form X = {N1Y Z | Z , Y ∈ B \ {N1}} or X =
{Y Z N1| Z , Y ∈ B \ {N1}}, N1 ∈ B, are strongly comma-free by Lemma 3.6 since
π1(X) ∩ π3(X) = ∅ and π1(X) ∩ π2(X) = ∅.

Now, let X be a strong comma-free code of maximal size and assume that |X | > 9.
ByLemma3.2,wemust haveπ1(X)∩ π3(X) = ∅.Hence, either |π1(X)| = |π3(X)| =
2 or {|π1(X)|, |π3(X)|} = {1, 3}.
Case 1 π1(X) = {N1} (π3(X) = {N1}, respectively) and thus |X | ≤ 12. Since
|X | > 9, there must be a trinucleotide N1N1Y ∈ X (Y N1N1 ∈ X , respectively) for
some Y ∈ B. However, then none of the trinucleotides N1Y Z (ZY N1, respectively)
for Z ∈ B\{N1} can be in X since otherwise we obtain an oriented path of length 2 in
G(X), namely N1 → N1Y → Z (Z → Y N1 → N1, respectively), which contradicts
the strong comma-freeness of X . Hence, |X | ≤ 12 − 3 = 9—a contradiction.

Case 2 π1(X) = {N1, N2} and π3(X) = {N3, N4}. Then, |X | ≤ 4 · |π2(X)| and
|X | > 9 implies that |π2(X)| ≥ 3. Assume that N ∈ π2(X), then there is a trinu-
cleotide N1NY ∈ X or N2NY ∈ X for some Y ∈ B. As in Case 1, this excludes two
trinucleotides from X , namely NY N3 and NY N4 if N = N1 or N = N2, N1N1N and
N2N1N or N1N2N and N2N2N if N = N3 or N = N4. All these trinucleotides are
different, and hence, six trinucleotides are excluded if |π2(X)| = 3 and eight trinu-
cleotides if |π2(X)| = 4. Thus, |X | ≤ 4 · |π2(X)| − 2 · |π2(X)| ≤ 8—a contradiction.
Therefore, case 2 cannot exist for strong comma-free codes of maximal size. ��

As a consequence of Theorem3.11,we can nowexplicitly list all strong comma-free
codes of maximal size.

List of strong comma-free codes of maximal size 3.12 The 8 strong comma-free
codes of maximal size 9 are:

X1 = {AAC, AGC, AT C, G AC, GGC, GT C, T AC, T GC, T T C},
X2 = {AAG, ACG, AT G, C AG, CCG, CT G, T AG, T CG, T T G},
X3 = {AAT, ACT, AGT, C AT, CCT, CGT, G AT, GCT, GGT },
X4 = {ACC, ACG, ACT, AGC, AGG, AGT, AT C, AT G, AT T },
X5 = {C AA, C AG, C AT, CG A, CGG, CGT, CT A, CT G, CT T },
X6 = {CC A, CG A, CT A, GC A, GG A, GT A, T C A, T G A, T T A},
X7 = {G AA, G AC, G AT, GC A, GCC, GCT, GT A, GT C, GT T },
X8 = {T AA, T AC, T AG, T C A, T CC, T CG, T G A, T GC, T GG}.
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Remark 3.13 The graph given in Fig. 2 is associated with the strong comma-free code
X1 from List 3.12.

We now turn to strong comma-free codes of size 8. We will see in particular that
not every such codes can be embedded into a strong comma-free code of maximal
cardinality.

Lemma 3.14 The number of trinucleotide strong comma-free codes of size 8 is 168.

Proof Clearly, removing one trinucleotide froma strong comma-free code yields again
a strong comma-free code. Thus,we obtain 72 = 8×9 strong comma-free codes of size
8 by simply removing an arbitrary trinucleotide from one of the 8 strong comma-free
codes X1, . . . , X8 of maximal size. It is easy to see that all these codes are different
by the structure of the strong comma-free codes of maximal size.

The remaining 96 = 24 × 6 strong comma-free codes of size 8 are generated by
the codes of the form

X = {N1Y N3, N1Y N4, N2Y N3, N2Y N4|Y ∈ B}

where B = {N1, N2, N3, N4}. From each of these 6 codes, 16 = 24 strong comma-
free codes of size 8 can be generated by removing the two forbidden trinucleotides
whenever Y ∈ π2(X)—see Case 2 in Theorem 3.11. Thus, there are 72 + 96 = 168
strong comma-free codes of size 8, and obviously, not all of them can be embedded
into a strong comma-free code of maximal size. ��

Wefinish this section by giving an example of a strong comma-free code that cannot
be embedded into a larger strong comma-free code.

Example 3.15 Figure 4 shows the associated graph G(X) of a strong comma-free code
X of size 8 which is not included in any of the strong comma-free codes of maximal
size 9 from List 3.12.

3.3 Self-Complementary Strong Comma-Free Codes

Wenow study strong comma-free codes which are self-complementary (see Definition
2.1). A computer calculation shows that such codes must be of size either 2 or 4. Table
2 gives the numbers of self-complementary strong comma-free codes of cardinalities
2 and 4. In particular, none of the strong comma-free codes of size 6 and 8 can be
self-complementary. Our main results in this subsection give a constructive proof of
the numbers in Table 2.

The following theorem gives a theoretical basis for Table 2.

Theorem 3.16 Let X ⊆ B3 be a trinucleotide code.

(1) If X is a self-complementary strong comma-free code with |X | = 2, then

X = {N1N2N3, c(N3)c(N2)c(N1)}
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1808 E. Fimmel et al.

Fig. 4 The associated graph
G(X) of the strong comma-free
code X = {AAT, ACC, ACT,

AGC, AGT, G AT, GGC, GGT }
of size 8 which is not included in
any of the strong comma-free
codes of size 9 from List 3.12
(Color figure online)

Table 2 Growth function
(numbers) of trinucleotide
self-complementary strong
comma-free codes of
cardinalities 2 and 4

Cardinality Number

2 12

4 8

for some N1, N2, N3 ∈ B with N1 = N3, c(N1) = N2 = c(N3). In total, there
are 12 self-complementary strong comma-free codes of size 2.

(2) If X is a self-complementary strong comma-free code with |X | = 4, then

X = {N1N2c(N1), N1c(N2)c(N1), N2N2c(N1), N1c(N2)c(N2)}

for some N1, N2, N3 ∈ B with N1 = N2 = c(N1). In total, there are 8 self-
complementary strong comma-free codes of size 4.

(3) There is no trinucleotide self-complementary strong comma-free code X ⊆ B3

with |X | > 4.

Proof Let X be a trinucleotide self-complementary strong comma-free code. Cer-
tainly, the size of X must be even by self-complementarity. We distinguish cases.

��
Claim 1 If X is of size 2, then X = {N1N2N3, c(N3)c(N2)c(N1)} for some
N1, N2, N3 ∈ B. Since X is strong comma-free, Lemma 3.2 implies that N1 = N3
which is equivalent to c(N1) = c(N3). Therefore, we do not have any directed paths
of the form M1M2 → M3 → M4M5 in G(X). If there is an oriented path of the
form M1 → M1M2 → M3 in G(X), then this implies that N2N3 = c(N3)c(N2) or
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N1N2 = c(N2)c(N1). Hence, strong comma-freeness implies that N2 = c(N3) and
N2 = c(N1). Clearly, if a code is of the stated form, then it is strong comma-free.

Thus, there are (4 · 2 · 3) : 2 = 12 self-complementary strong comma-free codes
of size 2. Indeed, we choose the first position of a ’first’ trinucleotide arbitrary, for the
third position there are three possibilities, for the second position only two possibilities
left and the second trinucleotide in the code is automatically deduced. The same code
can be obtained if we begin with the ’second’ trinucleotide; hence, we have to divide
by 2 the number obtained.
Claim 2 Let X be of size 4. We have π1(X) = c(π3(X)) due to self-complementarity.
Assume that |π1(X)| = |c(π3(X))| = 1, e.g., π1(X) = {N1}, then X =
{N1N2c(N1)|N2 ∈ B}. Thus, there is an oriented path of length 2, namely N1 →
N1c(N1) → c(N1) in G(X)—contradicting strong comma-freeness.We conclude that
|π1(X)| = |c(π3(X))| = 2 since π1(X) ∩ π3(X) = ∅. w.l.o.g., we can assume that
π1(X) = {N1, N2} and π3(X) = {c(N1), c(N2)} for N1, N2 ∈ B. Moreover, since a
subcode of a strong comma-free code is also strong comma-free, the conditions from
(1) stay true also in the case of a code with |X | = 4.
Next we observe that X cannot have the two forms

X ={N1N2c(N1), N1c(N2)c(N1), N2N1c(N2), N2c(N1)c(N2)|N1, N2 ∈ B, N1
(∗)= N2 = c(N1)}

since there is an oriented path of length 2, namely N1 → N2c(N1) → c(N2) in G(X),
and

X = {N1N2c(N2), N2c(N2)c(N1), N2N2c(N1), N1c(N2)c(N2)|N1, N2 ∈ B, N1
(∗∗)= N2 = c(N1)}

since there is an oriented path of length 2, namely N1 → N2c(N2) → c(N1) in G(X).
The only possibility left is that X has the form

X = {N1N2c(N1), N1c(N2)c(N1), N2N2c(N1), N1c(N2)c(N2)|N1, N2 ∈ B, N1

= N2 = c(N1)}
as stated above. X is self-complementary and strong comma-free simultaneously. To
construct such a code,we have four possibilities to choose N1 and then twopossibilities
to choose N2. In total, there are 4·2 = 8 self-complementary strong comma-free codes
of size 4.
Claim 3 Assume that X has size ≥ 6. As in (2), we conclude that |π1(X)| =
|c(π3(X))| = 2 and π1(X) = c(π3(X)). Assume w.l.o.g. that π1(X) = {N1, N2} and
π3(X) = {c(N1), c(N2)} for N1, N2 ∈ B. Then, there exists a self-complementary
strong comma-free subcode Y ⊆ X with |Y | = 4. Y must have the form described in
(2). According to (1), only two pairs N2N1c(N2) and N2c(N1)c(N2) or N1N2c(N2)

and N2c(N2)c(N1) can be considered for the choice of the last pair trinucleotide—
complementary trinucleotide. However, due to arguments (*) and (**) above, in both
cases there are oriented paths of length 2 in G(X). This leads us to a contradiction. ��
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We now give a complete list of all self-complementary strong comma-free codes.

List of self-complementary comma-free codes 3.17 The 12 self-complementary
strong comma-free codes of size 2 are:

{AAC, GT T }, {AAG, CT T }, {ACC, GGT }, {ACT, AGT },
{AGG, CCT }, {C AA, T T G}, {C AG, CT G}, {CC A, T GG},
{G AA, T T C}, {G AC, GT C}, {GG A, T CC}, {T C A, T G A}.

The 8 self-complementary strong comma-free codes of size 4 are:

{AAC, G AC, GT C, GT T }, {AAG, C AG, CT G, CT T },
{ACC, ACT, AGT, GGT }, {ACT, AGG, AGT, CCT },
{C AA, C AG, CT G, T T G}, {CC A, T C A, T G A, T GG},
{G AA, G AC, GT C, T T C}, {GG A, T C A, T CC, T G A}.

We conclude this subsection with some examples of graphs associated with the
self-complementary strong comma-free codes.

Example 3.18 Figures 5 and 6 give the associated graphs of some of the self-
complementary strong comma-free codes from List 3.17.

3.4 CF3-Property of Strong Comma-Free Codes

As discussed in Introduction, the maximal self-complementary circular code X identi-
fied in genes (Arquès and Michel 1996) has the additional property that the cyclically
permuted codes α1(X) and α2(X) are circular as well. This property is called the
C3-property. Similarly, one can ask whether the strong comma-free codes admit a

Fig. 5 The associated graphs G(X) of the self-complementary strong comma-free codes a X =
{ACC, GGT } of size 2 and b X = {ACT, AGT } of size 2 (Color figure online)
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Fig. 6 The associated graphs G(X) of the self-complementary strong comma-free codes a
{CC A, T C A, T G A, T GG} of size 4 and b {G AA, G AC, GT C, T T C} of size 4 (Color figure online)

corresponding property. The main result will show that indeed a strong comma-free
code is a C F3-code, i.e., its cyclically permuted codes are even comma-free—but not
strong comma-free.

We start with an example showing that in general a cyclically permuted code of a
strong comma-free code is not necessarily strong comma-free again.

Example 3.19 Consider X = {ACG, AAG} with α1(X) = {CG A, AG A}. Accord-
ing to Lemma 3.2, X is strong comma-free while α1(X) is not.

The main theorem now shows that the class of codes with disjoint first and third
coordinates (first and second, or second and third coordinates, respectively) are in the
class of C F3-codes (see Definition 2.4).

Theorem 3.20 Let X ⊆ B3 be a trinucleotide code such that π1(X) ∩ π3(X) = ∅ or
π1(X) ∩ π2(X) = ∅ or π2(X) ∩ π3(X) = ∅. Then X is a C F3-code.

Proof The code X itself is comma-free according to Lemma 3.4. Moreover, if one of
the conditions is satisfied for X , then the two other conditions are satisfied for α1(X)

and α2(X). Thus, α1(X) and α2(X) are also comma-free by Lemma 3.4. ��
The next example shows that the converse implication in Theorem 3.20 does not

hold.

Example 3.21 Let X = {AAG, CT A}, then X is a C F3-code but X satisfies the three
conditions π1(X) ∩ π2(X) = π2(X) ∩ π3(X) = π1(X) ∩ π3(X) = {A} = ∅.

Since any transformation of nucleotides preserves comma-freeness, we immedi-
ately obtain

Lemma 3.22 If X is a C F3-code then and π ∈ SB is a transformation, then π(X) is
also a C F3-code.

Proof For all α ∈ S3 and π ∈ SB, the property α(π(X)) = π(α(X)) is true (see also
Fimmel et al. 2014). ��
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This argument is in the line of a number of results, showing that systematical
exchanges of nucleotides in a code X preserve one-to-one its error-detecting properties
(compare also Theorem 3.8 and the corresponding results for circular and C3-codes
from Fimmel et al. 2014).

Corollary 3.23 Let X ⊆ B3 be a trinucleotide strong comma-free code. Then X is a
C F3-code.

Proof Follows from Lemma 3.2 and Theorem 3.20. ��
The next example shows that there are C F3-codes where X and its cyclically

permuted codes α1(X) and α2(X) are not strong comma-free; hence, the class of
C F3-codes is strictly larger than the class of strong comma-free codes.

Example 3.24 Let us consider X = {AAG, GCC}. Then X , α1(X) = {AG A, CCG}
and α2(X) = {G AA, CGC} are comma-free but not strong comma-free (see Lemma
3.2).

However, the class of all C F3-codes obviously lies in the class of all C3-codes. As
a consequence, we have the following result.

Corollary 3.25 Any strong comma-free code is C3.

Proof The claim obviously follows from Corollary 3.23 since every comma-free code
is also circular. ��

We have seen that the classes of strong comma-free codes (SC FC), comma-free
codes (C FC), circular codes (CC), C F3-codes (C F3C) and C3-codes (C3C) form
the following hierarchy:

(i) SC FC ⊂ C F3C ⊂ C FC ⊂ CC .
(ii) SC FC ⊂ C F3C ⊂ C3C ⊂ CC .

This hierarchy is also displayed in Fig. 7.

3.5 Strong Comma-Free Codes and the Standard Genetic Code

In this section, we investigate which amino acids are coded by strong comma-free
codes. Since even codes of size one can be non-strong comma-free, the first result is
important.

Proposition 3.26 Each amino acid in the standard genetic code is coded by at least
one strong comma-free code of size 1.

Proof By excluding the four periodic trinucleotides {AAA, CCC, GGG, T T T } and
the 12 trinucleotides {AC A} coding T hr , {AG A} coding Arg, {AT A} coding I le,
{C AC} coding His, {CGC} coding Arg, {CT C} coding Leu, {G AG} coding Glu,
{GCG} coding Ala, {GT G} coding V al, {T AT } coding T yr , {T CT } coding Ser
and {T GT } coding Cys, we see by inspection of the genetic code table that each of
the 20 amino acids is coded by at least one trinucleotide which is a strong comma-free
code of size 1. ��

123



Strong Comma-Free Codes in Genetic Information 1813

Comma-free codes

Circular codes

CF3 codes

Strong comma-free 
codes

C3 codes

Fig. 7 Hierarchy of the five classes of strong comma-free codes, comma-free codes,C F3-codes,C3-codes
and circular codes (Color figure online)

Wenow turn our attention to amino acidswhich are encoded by sets of trinucleotides
that form a strong comma-free code.

Proposition 3.27 There are 9 amino acids S = {Asn, Asp, Gln, Gly,

Lys, Met, Phe, Pro, T r p} among 20 such that for each amino acid from S,
its synonymous trinucleotide set (excluding the necessary periodic trinucleotides
{AAA, CCC, GGG, T T T }) is a strong comma-free code.

Proof {AT G} coding Met , {T GG} coding T r p, {AAC, AAT } coding Asn,
{G AC, G AT } coding Asp and {C AA, C AG} coding Gln are strong comma-free
codes. Moreover, the three trinucleotides {T AA, T AG, T G A} coding the stop signal
also build a strong comma-free code.

If the four periodic trinucleotides are excluded, four additional amino acids are
coded by a strong comma-free code: {GG A, GGC, GGT } coding Gly, {AAG} cod-
ing Lys, {T T C} coding Phe and {CC A, CCG, CCT } coding Pro. ��

Table 3 shows that the 8 trinucleotide strong comma-free codes of maximal size
(called M SC FC and listed in List 3.12) allow to code at least 4 amino acids (in case
of X5, X7 and X8) and at most 9 amino acids (in case of X1 and X3).

We finally investigate the primeval RNY code (Eigen and Schuster 1978), which
is supposed to be one possible predecessor of the current standard genetic code. Our
results show that the RNY code had very strong error-detecting properties and might
have evolved from strong comma-free codes.

Proposition 3.28 The primeval RNY code

{AAC, AAT, ACC, ACT, AGC, AGT, AT C, AT T,

G AC, G AT, GCC, GCT, GGC, GGT, GT C, GT T }
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is a self-complementary C F3-code of size 16. Moreover, it is the union of two strong
comma-free codes of size 8 which are complementary to each other.

Proof The self-complementary comma-free RNY code (see also Michel et al. 2008a;
Fimmel and Strüngmann 2015) has 16 trinucleotides with purine R = {A, G} as
first nucleotide, N ∈ B as second nucleotide and pyrimidine Y = {C, T } as third
nucleotide. Thus, we have π1(X)∩π3(X) = ∅. Then, according to Theorem 3.20, the
RNY code is also C F3. It is easy to check that the RNY code can be partitioned into
the two complementary subcodes

{AAC, AT T, GGT, AGT, GCT, AT C, G AC, GCC}

and

{AAT, ACC, ACT, AGC, G AT, GGC, GT C, GT T }

which are strong comma-free. ��

3.6 A Model of Evolution of Circular Codes

Circular codes allow to retrieve the reading (correct) framewith atmost 13 nucleotides,
comma-free codes with at most 3 nucleotides and strong comma-free codes with at
most 2 nucleotides. The properties of these three classes of circular codes related to
the reading frame retrieval, the cardinality range and the numbers of codes allow us
to propose a model of evolution of circular codes (Fig. 8).

According to this model, evolution of circular codes is based on an increase in
combinatorial flexibility, starting with strong comma-free codes, then comma-free
codes up to circular codes which contain the greatest number of codes and, in addition,
the longest nucleotide window of reading frame retrieval.

This combinatorial circular code evolution may also be associated with time evo-
lution where strong comma-free codes and comma-free codes are more ancestral than
circular codes.

Table 3 Amino acids encoded by the 8 trinucleotide strong comma-free codes of maximal size (called
M SC FC and listed in List 3.12)

M SC FC Coded amino acids

X1 {Asn, Asp, Cys, Gly, I le, Phe, Ser, T yr, V al}
X2 {Gln, Leu, Lys, Met, Pro, Ser, T hr}
X3 {Ala, Arg, Asn, Asp, Gly, His, Pro, Ser, T hr}
X4 {Arg, I le, Met, Ser, T hr}
X5 {Arg, Gln, His, Leu}
X6 {Ala, Arg, Gly, Leu, Pro, Ser, V al}
X7 {Ala, Asp, Glu, V al}
X8 {Cys, Ser, T r p, T yr}
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Fig. 8 A model of evolution of
circular codes (Color figure
online)

Circular (C) codes
Reading frame retrieval: at most 13

Cardinality: 1 to 20
Number of C codes with 1 60

Number of C codes with 20 : 12,964,440

Strong comma-free (SCF) codes
Reading frame retrieval: at most 2

Cardinality: 1 to 9
Number of SCF codes with 1 48
Number of SCF codes with 9 8

Comma-free (CF) codes
Reading frame retrieval: at most 3

Cardinality: 1 to 20
Number of CF codes with 1 60

Number of CF codes with 20 408

Recent results support this hypothesis (El Soufi and Michel 2017). Indeed, pure
and long repeated trinucleotides are very common in genomes (noncoding regions)
of eukaryotes (e.g., Canapa et al. 2002; Gemayel et al. 2010), e.g., (AAC)2885,
(G AA)3512, (GT C)605 and (T AC)576 in S. pennellii, (AAT )4317, (AT T )6425 and
(G AT )692 in C. sinensis, (ACC)121, (GCC)185 and (GGC)70 in O. brachyantha,
(AT C)715 in C. sativa, (C AG)1185, (CT C)355, (CT G)241 and (G AG)274 in F. albi-
collis, (G AC)48 in B. terrestris, (GGT )210 in H. sapiens, (GT A)642 in Z. mays,
(GT T )1413 and (T T C)1421 in C. arietinum (from Table 2 in El Soufi and Michel
2017). Note that the longest pure repeated trinucleotide (AT T )6425 observed so far
has a length of l = 19275 nucleotides. These pure and long repeated trinucleotides
can be associated with a genetic information of low complexity.

For the pure and long repeated trinucleotides, the statistical analysis developed
in El Soufi and Michel (2017) cannot decide between (N1N2N3)

n , (N2N3N1)
n

and (N3N1N2)
n with N1, N2, N3 ∈ B. For example, a sequence of the form

N4N1N2N3...N1N2N3N1N2N4 with N1, N2, N3, N4 ∈ B and N1 = N2 = N3 =
N4 can be assigned to the repeated trinucleotide (N1N2N3)

n or (N2N3N1)
n or

(N3N1N2)
n . In fact, the purpose of the developed analysis is the identification of

pure and long repeated trinucleotides in eukaryotic genomes and their assignment to
a class of permuted trinucleotides [N1N2N3] = {N1N2N3, N2N3N1, N3N1N2}.

From a scientific point of view which has been ignored so far, these pure repeated
trinucleotides are in fact X circular code motifs, i.e., motifs from the circular code X
identified in genes of minimal cardinality 1. They are generated by: (i) strong comma-
free codes (of minimal cardinality 1), precisely the class of trinucleotides [N1N2N3]
with N1 = N2 = N3 as their associatedgraphsG(N1N2N3)haveonly orientedpaths of
length 1, i.e., the eight trinucleotide classes [AT C], [C AG], [CT G], [G AC], [G AT ],
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[GT A], [GT C] and [T AC]; and (ii) comma-free codes (of minimal cardinality 1),
precisely the class of trinucleotides [N1N2N1]with N1 = N2 as their associated graphs
G(N1N2N1) have an oriented path of length 2, i.e., the 12 trinucleotide classes [AC A],
[AG A], [AT A], [C AC], [CGC], [CT C], [G AG], [GCG], [GT G], [T AT ], [T CT ]
and [T GT ]. Note that this class contains two strong comma-free codes N1N1N2
and N2N1N1, which cannot be distinguished statistically from the comma-free code
N1N2N1.

The pure and long repeated trinucleotides in genomes are very unstable. Mutation
with rates up to 100,000 times higher than the genomic averagemutation rate increases
their evolutionary stability (e.g., Canapa et al. 2002; Gemayel et al. 2010). Mutation
increases the cardinality (composition) and decreases the length of the pure and long
repeated trinucleotides leading to mixed and short repeated trinucleotides which can
be associated with a genetic information of middle complexity. Surprisingly, mixed
and short repeated trinucleotides can contain circular code information. For example,
X motifs of cardinality 5 are observed in genomes (El Soufi and Michel 2017):

• CT G, GCC, GT T, GT C, (ACC)30 of l = 102 nucleotides in H. sapiens,
• (G AA)11, (G AC)3, AAC, (GGT )2, G AG of l = 54 nucleotides in H. sapiens,
• (GGT )7, G AC, AAT, G AT, (G AA)2 of l = 36 nucleotides in H. sapiens,
• (GGC)16, GT A, GCC, GT A, G AG, GGT, G AG of l = 66 nucleotides in H.

sapiens,
• ACC, GCC, (GT T )9, AT T, (GT T )2, AT T, (GT T )2, AT C of l = 54
nucleotides in S. cerevisiae,

• GT C, (AT C)9, ACC, (AT C)2, (AT T )3, GGT of l = 51 nucleotides in S. cere-
visiae,

• C AG, GT C, (T T C)21, (CT C)11, CT G of l = 105 nucleotides in M. musculus,
• T T C, C AG, GGC, (AT C)5, (AT T )14 of l = 66 nucleotides in M. musculus,
• GCC, GT C, ACC, GT C, ACC, GT C, GCC, ACC, (GT C)8, CT C, AT C,

CT C, GT C, GCC, (GT C)2 of l = 69 nucleotides in Z. mays,
• G AC, GGC, AAC, G AG, G AC, G AG, (G AC)5, GGC, (G AC)4, GGT,

GGC, G AC, GGT, G AC, GGC of l = 66 nucleotides in Z. mays, etc.

The X motifs of minimal or low cardinality, i.e., pure and mixed repeated trin-
ucleotides of length ≥30 nucleotides, are very rare in genes (eukaryotes, bacteria,
archaea, plasmids, viruses). The X motifs in genes have preferentially increased car-
dinalities and decreased lengths (El Soufi and Michel 2017) and can be associated
with a genetic information of high complexity.

3.7 Reading Frame Retrieval in Current Genes

The reading frame retrieval of circular codes, which is at most 13 nucleotides, is true
for sequences composed of at most 20 trinucleotides belonging to the circular codes,
e.g., the circular code X identified in genes. A similar reasoning can be applied to the
comma-free codes. For the strong comma-free codes, the case is even worse as the
maximal cardinality is nine trinucleotides (Fig. 8).

However, current genes use 61 trinucleotides (without the three stop trinucleotides
{T AA, T AG, T G A}), and not 20 trinucleotides. Hence, the frequency P(X) of the
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ATG TAA

X mo�f X mo�f X mo�f

Fig. 9 A model of reading frame retrieval in genes using the X circular code motifs (Color figure online)

circular code X in genes is obviously less than 100%. Precisely, P(X) = 46.6% in
genes of bacteria (7,851,762 genes, 2,481,566,882 trinucleotides), P(X) = 41.5% in
genes of eukaryotes (1,662,579 genes, 824,825,761 trinucleotides), P(X) = 47.5%
in genes of plasmids (237,486 genes, 68,244,356 trinucleotides) and P(X) = 43.4%
in genes of viruses (184,344 genes, 45,688,798 trinucleotides) (Table 5b in Michel
2015). For an order of magnitude and by considering, for example, the bacterial genes,
a trinucleotide of X has an average frequency equal to 2.33% while a trinucleotide of
the 41 remaining trinucleotides has an average frequency equal to 1.30%.

The problem of reading frame retrieval in current genes has been initially addressed
according to a statistical approach. The method developed was to use a nucleotide
window, as with the circular code but longer, containing the circular code information,
precisely the code X in the start frame f of thewindow, the permuted codeP(X) = X1
in the shifted frame f1 of the window and the second permuted code P2(X) = X2
in the shifted frame f2 of the window (details in Sect. 3.4. in Frey and Michel 2006).
In the bacterial genes studied in 2006 (483926 genes, 523375 kb), the reading frame
is retrieved with a frequency of 48.0% (probability of 1/3 in the random case) with
a window of 5 nucleotides, 58.6% with a window of 13 nucleotides (100% with a
circular code) and 81.0% with a window of 50 nucleotides (Fig. 3 in Frey and Michel
2006). However, it is difficult to propose a biological process for the ribosome for
maintaining the reading frame in a gene by considering several tens of nucleotides.

Recent results have shown that the X circular code motifs occur preferentially in
genes compared to genomes (noncoding regions of eukaryotes) with a factor of about
8 (Tables 4 and 5, Figs. 7 and 8 in El Soufi and Michel 2016). Thus, a model of frame
retrieval can be proposed here where the ribosome pairs with the X motifs located at
different positions in the genes (Fig. 9). Each pairing needs at most 13 nucleotides.

The ribosome contains the circular code information for pairing with the X motifs
in genes. Indeed, the X motifs are identified in tRNAs of prokaryotes and eukaryotes
(Michel 2012, 2013) and in rRNAs of prokaryotes (16S) and eukaryotes (18S), in
particular in the ribosomedecoding centerwhere the universally conserved nucleotides
G530, A1492 and A1493 are included in the X motifs (Michel 2012; El Soufi and
Michel 2014, 2015). However, the experimental biological mechanism by which the
circular code maintains the translation frame is unknown.

4 Conclusion

Circular codes have two important proper subsets: the well-known comma-free codes
and the strong comma-free codes identified here. These three classes of codes are
important for investigating and identifying new properties in the genetic code. In
particular, error detection and error correction during the translation process can be
explained by circularity and the stronger versions of (strong) comma-freeness.

123



1818 E. Fimmel et al.

In the present article, the class of strong comma-free codes has been investigated
for the first time. We have demonstrated that this class is a proper subset of the very
important class of so-called C F3-codes which allow an immediate frameshift error
detection in each of the three frames. Additionally, some useful and easy-to-handle
conditions for screening codes with regard to their strong comma-freeness were found.
If a trinucleotide in a given code has repetitive nucleotides in the first and the last
positions, then the code cannot be strong comma-free. If a given code has no repetitive
nucleotides in at least twopositions, i.e., in the first and third positions, or in the first and
second positions, or in the second and third positions, the code is automatically C F3,
i.e., it has the property of the immediate error detection in the three frames. A complete
description of strong comma-free codes of maximal size and self-complementary
strong comma-free codes is also given.

Some new properties of the genetic code and its evolution are also identified. Each
amino acid in the standard genetic code is coded by at least one strong comma-
free code of size 1. As the reading window of such strong codes is at most two
nucleotides, the amino acid decoding at the codon-anticodon process could be done
with the first and second pairing positions, the second and third pairing positions or the
third pairing position and a next position between tRNA and mRNA. In the last case, a
tetranucleotidemight be involved in amino acid decoding. There are 9 amino acids S =
{Asn, Asp, Gln, Gly, Lys, Met, Phe, Pro, T r p} among20 such that for each amino
acid from S, its synonymous trinucleotide set (excluding {AAA, CCC, GGG, T T T })
is a strong comma-free code. The primeval RNY code is a self-complementary C F3-
code of size 16, which is in addition to the union of two strong comma-free codes
of size 8, complementary to each other. This result might indicate that during the
evolutionary process the RNY code was created from a more ancient strong comma-
free code by complementarity, in agreement with the proposed model of evolution of
circular codes (Fig. 8).
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