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Abstract
Self-complementary circular codes are involved in pairing genetic processes. A maximal C3 self-complementary circular 
code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 
7(20):1–16 2017, J Theor Biol 380:156–177, 2015; Arquès and Michel in J Theor Biol 182:45–58 1996). In this paper, 
self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. 
(Philos Trans R Soc A 374:20150058, 2016). A directed graph (X) associated with any code X mirrors the properties of 
the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in 
terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size 
∣ X ∣≥ 18 trinucleotides, in particular for maximal circular codes ( ∣ X ∣= 20 trinucleotides). For codes of small-size ∣ X ∣≤ 16 
trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the 
longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that 
the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this 
result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecu-
tive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an 
arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, 
an important criterion for analyzing the X motifs in genes in the future.

Keywords  Self-complementary circular codes · Graph properties · Translation process · Reading frame · Genetic code

Introduction

There is a consensus of opinion that the standard genetic 
code conserves vestiges of earlier, simpler codes, that may 
have been used to code fewer amino acids than the modern 

set of 20. Many examples of such ancient genetic codes 
have been proposed, including the trinucleotide codes RRY​ 
of size 8 (Crick et al. 1976) and RNY of size 16 ( R = {A,G} , 
Y = {C, T} , N = {A,C,G,T} ) (Eigen and Schuster 1978; 
Shepherd 1981), the trinucleotide codes GNC of size 4 and 
SNS of size 16 ( S = {C,G} ) (Ikehara 2002), GHN of size 
12 ( H = {A,C, T} ) (Trifonov 1987), etc. Among the trinu-
cleotide codes proposed, some of them have the important 
property to be circular. A circular code X is a set of words 
such that any motif (sequence) from X, called X circular 
code motif or more simply X motif, allows to retrieve, main-
tain and synchronize the reading (correct, original) frame. 
All the previously mentioned trinucleotide codes are circu-
lar, with the exception of the code SNS (as, for example, the 
periodic trinucleotide CCC ∈ SNS ). The codes RRY​, RNY, 
GNC and GHN also belong to the more restrictive class of 
comma-free codes. (The longest path length in their associ-
ated graphs is 2, definition given in “Trinucleotide circular 
codes and their associated graphs” section.) The code RRY​ 
is in addition strong comma-free. (The longest path length in 
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its associated graph is 1, definition given in “Trinucleotide 
circular codes and their associated graphs” section.) A very 
few trinucleotide circular codes have in addition the property 
of self-complementarity, i.e., each trinucleotide in the code 
is complementary to another trinucleotide in the code. The 
comma-free codes RRY​ and GHN are not self-complemen-
tary (as ⃖ ������������c(RRY) = RYY ∉ RRY and ⃖ �������������c(GHN) = NDC ∉ GHN 
with D = {A,G,T} , definition of reversed complemented 
given in “Self-complementarity as a graph property” sec-
tion). The comma-free codes RNY and GNC are self-com-
plementary (as �⃖�����������c(RNY) = RNY  and �⃖������������c(GNC) = GNC).

Furthermore, a maximal C3 self-complementary trinu-
cleotide circular code X was identified in genes of bacteria, 
archaea, eukaryotes, plasmids and viruses (Michel 2017, 
2015; Arquès and Michel 1996). It contains the following 
20 trinucleotides

In this paper, we study the self-complementary circular 
codes which are involved in pairing genetic processes. For 
the first time, all the self-complementary circular codes 
with words of 3 letters (trinucleotides) on a 4-letter alpha-
bet (genetic alphabet) are identified (see their growth func-
tion given in Table 1), i.e., not just the few cases mentioned 
above, and several new mathematical properties are proven. 
Thus, genetic properties, in particular amino acid coding, of 
any self-complementary circular code can be investigated in 
the future. The paper is structured as follows.

After recalling the definition of a graph associated with a 
trinucleotide code in “Trinucleotide circular codes and their 
associated graphs” section and the theorem of acyclic graph 
of a trinucleotide code which is circular, we demonstrate in 
“Self-complementarity as a graph property” section that a 
code X is self-complementary if and only if its graph (X) 
has a self-complementary set of vertices and for any ver-
tex v, the outgoing degree d+(v) equals the ingoing degree 
d−( �⃖����c(v)) of the complementary vertex. It is shown that this 
statement is true for the self-complementary circular codes 
of sizes 18 and 20 trinucleotides and for the self-comple-
mentary comma-free codes of sizes 14 and 16 trinucleo-
tides. (There are no self-complementary comma-free codes 
of sizes 18 and 20 trinucleotides.)

In “Longest paths in the graphs associated with self-
complementary circular codes” section, we investigate the 
length of longest paths in the graphs (X) associated with 
self-complementary circular codes X. The longest path 
lengths (maximal arrow-length of paths) belong to the set 
{1, 2, 3, 4, 6, 8} for the self-complementary circular codes 
and to the set {4, 6, 8} for the class of 528 maximal (of size 
20 trinucleotides) self-complementary circular codes. The 
growth function of all self-complementary circular codes 

(1.1)

X = {AAC,AAT ,ACC,ATC,ATT ,CAG,CTC,CTG,GAA,GAC,

GAG,GAT ,GCC,GGC,GGT ,GTA,GTC,GTT ,TAC,TTC}.

of cardinality n = 2, 4,… , 20 as a function of the longest 
path length l = 1, 2,… , 8 is given. We also determine the 
structure of the longest paths for the self-complementary 
circular codes.

In “The reading frame of circular codes” section, we 
prove that the longest paths in such graphs (X) determine 
the reading frame for the self-complementary circular codes 
X.

By applying this result in “Application: Reading frame of 
the maximal C3 self-complementary circular code X identi-
fied in genes” section, the reading frame in any arbitrary 
sequence of trinucleotides is retrieved after at most 15 nucle-
otides, i.e., 5 consecutive trinucleotides, from the circular 
code X identified in genes. Thus, any X motif of length at 
least 5 trinucleotides located anywhere in a gene made of a 
series of any trinucleotide from the 64 possible ones (i.e., not 
necessarily all of them belonging to X) defines uniquely the 
reading (correct) frame. In this line of direction, very recent 
results have shown an enrichment of X motifs in the genes 
of the yeast Saccharomyces cerevisiae (Michel et al. 2017).

Trinucleotide circular codes and their 
associated graphs

In this section, we recall some notations and results from 
Fimmel et al. (2016). Let  = {A,C,G,T} be the set of 
nucleotides, where A stands for adenine, C stands for cyto-
sine, G stands for guanine, and T stands for thymine. A tri-
nucleotide code is a subset X ⊆ 3 . The following definition 
relates a directed graph to any trinucleotide code. Recall 
that a graph  consists of a finite set of vertices (nodes) V 
and a finite set of edges E, where an edge is a set {v,w} of 
vertices from V. The graph is called oriented or directed if 
the edges have an orientation, i.e., the edges are considered 
to be ordered pairs [v, w] (for more details see, for example, 
Clark and Holton 1991). We now recall the graph theory 
approach from Fimmel et al. (2016).

Definition 2.1  (Definition 2.1, Fimmel et al. 2016). Let 
X ⊆ 3 be a trinucleotide code. We associate a directed 
graph (X) = (V(X),E(X)) with X, with set of vertices V(X) 
and set of edges E(X) as follows

•	 V(X) = {N
1
,N

3
,N

1
N
2
,N

2
N
3
∶ N

1
N
2
N
3
∈ X},

•	 E(X) = {[N
1
,N

2
N
3
], [N

1
N
2
,N

3
] ∶ N

1
N
2
N
3
∈ X}.

The graph (X) is called the graph associated with X.
The graph (X) associated with the code X was used in 

Fimmel et al. (2016) in order to characterize the circular 
codes among the trinucleotide codes. Recall that a trinu-
cleotide code X ⊆ 3 is said to be a circular code if for 
any concatenation x

1
⋯ xm of trinucleotides from X there is 
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only one partition into trinucleotides from X when read on 
a circle. Moreover, the code is called comma-free if, given 
any two trinucleotides x

1
, x

2
∈ X , any subtrinucleotide of the 

concatenation x
1
x
2
 , except x

1
, x

2
 themselves, does not belong 

to X (Crick et al. 1957; Golomb et al. 1958a, b). Roughly 
speaking, the reading frame is retrieved after the reading 
of one trinucleotide in a sequence of trinucleotides from a 
comma-free code, while for circular codes, it is retrieved 
after the reading of at most four trinucleotides.

Here, we recall the main result from Fimmel et al. (2016) 
on the graph theoretic characterization of circular codes. 
Recall that a cycle in a graph  is an oriented closed path 
and that a graph is acyclic if it has no cycles (Clark and 
Holton 1991).

Theorem 2.2  (Theorem 2.6, Fimmel et al. 2016). Given 
a trinucleotide code X ⊆ 3 , the following statements are 
equivalent

(1) X is circular;
(2) (X) is acyclic.

Figure 1 displays the graph (X) of the maximal C3 self-
complementary trinucleotide circular code X (1.1) identified 
in genes.

Recall that a code is called self-complementary if for each 
trinucleotide from X also the complementary trinucleotide is 
in X. (A codon in X implies that its anticodon is also in X.) 
Moreover, a code has the C3-property if besides X also the 

two shifted codes �
1
(X) and �

2
(X) are circular, i.e., X is also 

circular in frames 1 and 2 (for more details see, for example, 
Fimmel et al. 2016). Clearly, a circular code can contain at 
most 20 trinucleotides, so a maximal circular code has a size 
exactly equal to 20.

Finally, we recall the main results from Fimmel et al. 
(2016, 2017) that characterize the comma-free codes and 
the strong comma-free codes by the longest paths in their 
associated graphs.

Theorem 2.3  (Theorem 2.11, Fimmel et al. 2016). Given 
a trinucleotide code X ⊆ 3 , the following statements are 
equivalent

(1) X is comma-free;
(2) The longest path in (X) is of length at most 2.

Theorem 2.4  (Definition 2.7, Fimmel et al. 2017). Given 
a trinucleotide code X ⊆ 3 , the following statements are 
equivalent

(1) X is strong comma-free;
(2) The longest path in (X) is of length at most 1.

In the next section, we will investigate for the first time 
the important biological property of self-complementarity as 
a graph property. We will also extend the above Theorem 2.3 
by relating the reading frame of self-complementary circular 
codes to the longest paths in their associated graphs. Note 
that by Theorem 2.2, any graph associated with a circular 
code has a bound on the lengths of paths since the graph is 
finite.

Self‑complementarity as a graph property

As we have seen in the above Theorems 2.2 and 2.3 (Theo-
rems 2.6 and 2.11 in Fimmel et al. 2016), graph theory pro-
vides a handsome criterion for testing circularity or comma-
freeness of codes. In this section, we will show that also the 
very important biological property of self-complementarity 
can be deduced from graphs associated with codes.

We first describe self-complementarity of some codes 
X. At first, we investigate the reversing (mirroring) trans-
formation which inverts the order of bases in any trinucle-
otide, i.e., for x = N

1
N
2
N
3
∈ 3 we have �⃖x = N

3
N
2
N
1
∈ 3 . 

If X is any trinucleotide code then �⃖X = { �⃖x ∶ x ∈ X} is the 
reversed code of X. Similarly, the complementing map 
c ∶ {A,C,G,T} → {A,C,G,T} that exchanges A and 
T as well as C and G induces the complemented code 
c(X) = {c(x) ∶ x ∈ X} where c(N

1
N
2
N
3
) = c(N

1
)c(N

2
)c(N

3
) 

for any trinucleotide x ∈ 3 . Note that for a trinucleotide 

A

AC

AT

CC

TC

TT

C

AG

TG

G

AA

GC

GT

TA

T

CA

CT

GA

GG

Fig. 1   Graph (X) of the maximal C
3 self-complemen-

tary trinucleotide circular code X = {AAC,AAT ,ACC,ATC,

ATT ,CAG,CTC,CTG,GAA,GAC,GAG,GAT ,GCC,GGC,GGT ,GTA,

GTC,GTT ,TAC,TTC} of size 20 in genes of bacteria, archaea, 
eukaryotes, plasmids and viruses (Michel 2017, 2015; Arquès and 
Michel 1996). The four nucleotides {A,C,G,T} have ingoing and 
outgoing edges. The four dinucleotides {AG,CC,TC,TG} of X 
have no outgoing edge, the four dinucleotides {CA,CT ,GA,GG} 
of X have no ingoing edge, and the seven remaining dinucleotides 
{AA,AC,AT ,GC,GT ,TA,TT} have ingoing and outgoing edges
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(also called codon) x = N
1
N
2
N
3
 , the complementary tri-

nucleotide (also called anticodon) of x is exactly �⃖�����c(x) and 
that a trinucleotide code X is called self-complementary if 
X = �⃖�����c(X) . The definitions of complementary and reversed 
complemented are identical.

The following proposition shows that the graph associ-
ated with a self-complementary trinucleotide code satisfies 
necessary conditions on its set of vertices. Recall that for a 
vertex v ∈  in some directed graph  , the ingoing degree 
d−(v) of v is the number of (directed) edges from  that end 
in v, while the outgoing degree d+(v) of v is the number of 
(directed) edges from  that start from v (Clark and Holton 
1991).

Proposition 3.1  Let X ⊆ 3 be a self-complementary trinu-
cleotide code and (X) = (V(X),E(X)) the graph associated 
with X. Then

(1) V(X) = �⃖�����������c(V(X)) , i.e., for each nucleotide v ∈ V(X) 
its complementary nucleotide c(v) ∈ V(X) and for each 
dinucleotide v ∈ V(X) its complementary dinucleotide 
�⃖����c(v) ∈ V(X);

(2) d+(v) = d−( �⃖����c(v)) for any vertex v ∈ V(X).

Proof  Claim (1): Let N
1
N
2
N
3
∈ X  . Since X is self-

complementary we have c(N
3
)c(N

2
)c(N

1
) ∈ X  . Thus, 

by definition of (X) , N
1
,N

3
, c(N

1
), c(N

3
) ∈ V(X) and 

N
1
N
2
,N

2
N
3
, c(N

3
)c(N

2
), c(N

2
)c(N

1
) ∈ V(X) ,  and hence 

Claim (1) holds.
Claim (2): [N

1
,N

2
N
3
], [N

1
N
2
,N

3
] ∈ E(X) is equivalent to 

[c(N
3
)c(N

2
), c(N

1
)], [c(N

3
), c(N

2
)c(N

1
)] ∈ E(X). 	�  □

It is now tempting to conjecture that the statement in 
Proposition 3.1 is also sufficient for a code which is circular. 
But this is not the case—unless for a circular code of size at 
least 18 as we will see in the next theorem.

Theorem 3.2  Let X ⊆ 3 be a trinucleotide circular code of 
size at least 18. Then X is self-complementary if and only if

(1) ∣ X ∣ is even, i.e., ∣ X ∣= 18 or ∣ X ∣= 20 (and hence 
maximal);
(2) V(X) = �⃖�����������c(V(X));
(3) d+(v) = d−( �⃖����c(v)) for any vertex v ∈ V(X).

Proof  One direction follows immediately from Proposition 
3.1. Note that a self-complementary code has to be of even 
size since no trinucleotide equals its complementary (reversed 
complemented) trinucleotide. The opposite direction is proved 
by computer calculations for all the 12,964,440 maximal cir-
cular codes and all the 1,012,099,740 circular codes of size 
18. There are 528 maximal self-complementary circular 
codes among the 12,964,440 maximal circular codes, and 

4032 self-complementary circular codes of size 18 among 
the 1,012,099,740 circular codes of size 18. 	�  □

It is a very surprising fact that the above equivalence 
in Theorem 3.2 only holds for circular codes of sizes 18 
or 20. We will show next that one can neither avoid the 
assumption on circularity nor the assumption on the size 
of the codes in Theorem 3.2. We start with a constructive 
process that yields in the end codes satisfying the two 
conditions (2) and (3) of Theorem 3.2.

Construction method 3.3  Start with a trinucleotide 
N
1
N
2
N
3
 and then choose a next trinucleotide that starts with 

the complementary of the dinucleotide N
2
N
3
 but does not 

end with the complementary of N
1
 . Continue this process 

until you get a long sequence of trinucleotides. The code 
constructed this way will satisfy the two conditions (2) and 
(3) of Theorem 3.2, but it is not self-complementary.

We give a basic example constructed by Method 3.3.

Example 3.4  The code X = {CAC,GAG,CTG,GTC} is not 
self-complementary since, for example, it does not contain 
the complementary trinucleotide GTG​ of CAC​, but it is easy 
to see that its corresponding graph satisfies the two condi-
tions (2) and (3) from Theorem 3.2. The code X is even 
comma-free and has been constructed using the above con-
struction Method 3.3: CAC ⇝ GTC ⇝ GAG ⇝ CTG.

However, Method 3.3 does not yield non-self-comple-
mentary codes of size larger than 8 such that the asso-
ciated graphs satisfy the two conditions (2) and (3) of 
Theorem 3.2.

Construction method 3.5  In order to construct non-self-
complementary codes larger than the size 8 and satisfying 
the two conditions (2), (3) of Theorem 3.2, a way is to com-
bine codes constructed by Method 3.3.

Using Method 3.5, Example 3.7 below shows that there 
are even codes of size 20 such that their associated graphs 
satisfy the two conditions (2) and (3) of Theorem 3.2, but 
are not self-complementary, and even strongly not self-
complementary, and not circular.

Definition 3.6  A code Y is strongly not self-complementary 
if for any trinucleotide y ∈ Y  , the complementary trinucleo-
tide �⃖����c(y) ∉ Y .

Example 3.7  The code Y of size 20

Y = {AAT ,ACA,AGT ,ATC,CAC,CCG,CGA,CTG,GAA,GAG,

GCA,GGC,GTC,GTT , TAC, TCC, TCT , TGA, TGG, TTA}
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is strongly not self-complementary and not circular, but its 
graph (Y) satisfies the two conditions (2) and (3) of Theo-
rem 3.2. Figure 2 displays the graph (Y) associated with Y.

Strongly not self-complementary circular codes satisfying 
the two conditions (2) and (3) of Theorem 3.2 exist. Example 
3.8 shows a strongly not self-complementary circular code 
of size 10.

Example 3.8  The code X
1
 of size 10

is a strongly not self-complementary circular code with 
its graph (X

1
) satisfying the two conditions (2) and (3) of 

Theorem 3.2. Figure 3 displays the graph (X
1
) associated 

with X
1
.

Codes of large sizes that are not circular, not self-com-
plementary and strongly not self-complementarity satisfying 
the two conditions (2) and (3) of Theorem 3.2 can easily be 
constructed, as shown in Example 3.9.

E x a m p l e  3 . 9   T h e  a d d i t i o n  t o  t h e  c o d e 
X = {CAC,GAG,CTG,GTC} from Example 3.4 of pairs of 
trinucleotide–complementary trinucleotide which are not 
contained in X can build not self-complementary codes of 
every even size between 4 and 60 such that their associated 
graphs have the two conditions (2) and (3) of Theorem 3.2. 
Note that adding such trinucleotide pairs does not violate the 

X
1
= {AAT ,ATC,CAC,CTG,GAA,GAG,GTC,GTT , TAC, TTA}

conditions (2) and (3) of Theorem 3.2 by the next Lemma 
3.10.

We continue with a few closure properties of the class 
of graphs that satisfy the two conditions (2) and (3) of 
Theorem 3.2.

Lemma 3.10  Let X
1
,X

2
⊆ 3 with X

1
∩ X

2
= � be trinu-

cleotide codes such that their associated graphs (X
1
) and 

(X
2
) satisfy the two conditions (2) and (3) of Theorem 3.2. 

Then the following statements hold

(1) The graph (Xc
1
) where Xc

1
∶= 3 ⧵ X

1
 satisfies both 

conditions (2) and (3) as well;
(2) The graph (Z) where Z ∶= X

1
∪ X

2
 satisfies both con-

ditions (2) and (3) as well.

Proof  Let X
1
,X

2
⊆ 3 with X

1
∩ X

2
= � be codes such that 

their associated graphs (X
1
) and (X

2
) satisfy the two con-

ditions (2) and (3) of Theorem 3.2.
Claim (1): It follows from the fact that the graph (3) 

satisfies the two conditions (2) and (3) of Theorem 3.2 and1 
(3) = (X

1
) ∪ (Xc

1
) and E(X

1
) ∩ E(Xc

1
) = �.

Claim (2): Condition (2) of Theorem 3.2 is obviously 
true since V(Z) = V(X

1
) ∪ V(X

2
) . Let us show that Condi-

tion (3) of Theorem 3.2 also holds. Since X
1
∩ X

2
= � , it 

follows that E(X
1
) ∩ E(X

2
) = � . Two cases are considered: 

(i) If v ∉ V(X
1
) ∩ V(X

2
) then also �⃖����c(v) ∉ V(X

1
) ∩ V(X

2
) 

and Condition (3) of Theorem  3.2 is satisfied since it 

A

AT

CA

GT

TC

C

AC

CG

GA

TG

G

AA

AG

GC

TTT

CC

CT

GG

TA

Fig. 2   Graph (Y) of the strongly not self-complementary and not 
circular code Y = {AAT ,ACA,AGT ,ATC,CAC,CCG,CGA,CTG,

GAA,GAG,GCA,GGC,GTC,GTT ,TAC,TCC,TCT ,TGA,TGG,TTA} 
of size 20 satisfying the two conditions (2) and (3) of Theorem 3.2

A

AT

TC

C

AC

TG

G

AA

AG

TTT

TA

CA

CT

GA

GT

Fig. 3   Graph (X
1
) of the strongly not self-complementary circular 

code X
1
= {AAT ,ATC,CAC,CTG,GAA,GAG,GTC,GTT ,TAC,TTA} 

of size 10 satisfying the two conditions (2) and (3) of Theorem 3.2

1  Recall that the union G
1
∪ G

2
 of two graphs G

1
= (V

1
,E

1
) and 

G
2
= (V

2
,E

2
) is defined as G = (V

1
∪ V

2
,E

1
∪ E

2
) (Clark and Holton 

1991).
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holds in (X
1
) or (X

2
) ; (ii) if v ∈ V(X

1
) ∩ V(X

2
) then also 

�⃖����c(v) ∈ V(X
1
) ∩ V(X

2
) and Condition (3) of Theorem 3.2 is 

also satisfied since in- and out-degrees which are equal in 
(X

1
) and (X

2
) , respectively, are added. 	�  □

In general, the graphs (X
1
∩ X

2
) and (X

1
∪ X

2
) do not 

satisfy the two conditions (2) and (3) of Theorem 3.2 even 
though both graphs (X

1
) and (X

2
) do, as shown in Example 

3.11.

Example 3.11  The two codes

lead to

Then (X
1
∩ X

2
) does not even satisfy Condition (2) of Theo-

rem 3.2 and (X
1
∪ X

2
) does not satisfy Condition (3) of 

Theorem 3.2, while both graphs (X
1
) and (X

2
) do.

Neither the assumption on the size of the code nor its cir-
cularity can be omitted in Theorem 3.2, as shown in Exam-
ple 3.12.

Example 3.12  The code X
2
 of size 16

is circular (even C3 ), but not self-complementary even if 
its graph (X

2
) satisfies the two conditions (2) and (3) of 

X
1
= {CAC,GAG,CTG,GTC}, X

2
= {CAC,GTG}

X
1
∩ X

2
= {CAC}, X

1
∪ X

2
= {CAC,GAG,CTG,GTC,GTG}.

X
2
={AAT ,ATC,ATT ,CAA,CAC,CTG,GAA,GAG,

GAT ,GCC,GGC,GTA,GTC,TAC,TTC,TTG}

Theorem 3.2. Figure 4 displays the graph (X
2
) associated 

with X
2
.

After having stated a theorem for the self-complementa-
rity of circular codes of large sizes, we aim a similar one for 
comma-free codes.

Theorem 3.13  Let X ⊆ 3 be a trinucleotide comma-free 
code of size at least 14. Then X is self-complementary if 
and only if

(1) ∣ X ∣= 14 or ∣ X ∣= 16;2

(2) V(X) = �⃖�����������c(V(X));
(3) d+(v) = d−( �⃖����c(v)) for any vertice v ∈ V(X).

Proof  As in the proof of Theorem 3.2, one direction fol-
lows immediately from Proposition 3.1. The opposite 
direction is proved by means of computer calculations for 
all the 25,473,732 comma-free codes of size 14 and all the 
2,743,080 comma-free codes of size 16. The fact that there 
are no self-complementary comma-free codes of size 18 or 
20 (Michel et al. 2008) completes the proof. 	� □

In the next section, we provide a characterization of the 
longest paths in the graphs associated with self-complemen-
tary circular codes.

Longest paths in the graphs associated 
with self‑complementary circular codes

In this section, we study the structure of the longest paths in 
graphs associated with self-complementary circular codes. 
Here, the length of a path may have different meanings, 
namely either the number of edges in the path or the length 
of the word obtained by concatenating its labels (vertices). 
In the sequel of this section, we will only look at the so-
called arrow-length.

Definition 4.1  Let X ⊆ 3 be a trinucleotide circular code 
and (X) its associated graph. Let p ∶ t

1
→ ⋯ → tn be a path 

in (X) where ti ∈  ∪ 2 for i = 1,… , n . Then the arrow-
length la(p) is defined as n − 1 . Moreover, by lmax(X) we 
denote the maximal arrow-length of a path, i.e., the length 
of a longest path, in the associated graph (X).

We would like to remark that the assumption on the 
circularity of the code in Definition 4.1 has only be made 

A

AT

TC

TT

C

AA

AC

TG

GAG

CC

GC

TA

T

CA

CT

GA

GG

GT

Fig. 4   Graph (X
2
) of the not self-complementary, circular code 

X
2
= {AAT ,ATC,ATT ,CAA,CAC,CTG,GAA,GAG,GAT ,GCC,GGC,

GTA,GTC,TAC,TTC,TTG} of size 16 satisfying the two conditions 
(2) and (3) of Theorem 3.2

2  Due to self-complementarity of X, ∣ X ∣ must be even, but in oppo-
site to circular codes, there are no self-complementary comma-free 
codes of sizes 18 or 20.
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in order to ensure that there is no cycle in the graph; oth-
erwise, the longest path has an infinite length. Recall that 
the longest path for the comma-free codes has length 
lmax(X) = 2 (Theorem 2.3) and that the longest path for 
the strong comma-free codes has length lmax(X) = 1 
(Theorem 2.4).

Table 1 gives the number of self-complementary circu-
lar codes X of different cardinality n (number of trinucleo-
tides in the code) depending on the length of a longest path 
lmax(X) . Figure 5 is a graphical representation of Table 1.

Surprisingly, according to the computational results 
in Table 1, lmax(X) is always bounded by 8. Theorem 4.2 
below explains this issue and characterizes completely the 
possible values of lmax(X) for non-maximal and maximal 
self-complementary circular codes.

Theorem 4.2  Let X ⊆ 3 be a trinucleotide circular code. 
The following statements about the maximal arrow-length 
lmax(X) of a path are true

(1) 1 ≤ lmax(X) ≤ 8;
( 2 )  I f  X  i s  s e l f - c o m p l e m e n t a r y ,  t h e n 
lmax(X) ∈ {1, 2, 3, 4, 6, 8} ,  i . e . ,  lmax(X) = 5, 7  a re 
excluded;
(3) If X is maximal and self-complementary, then 
lmax(X) ∈ {4, 6, 8}, i.e., in addition to (2), lmax(X) = 1, 2, 3 
are impossible.

Proof  Claim (1): It is immediate since for lmax(X) ≥ 9 in a 
graph (X) associated with a circular code, there is a path 
containing at least 5 vertices labeled by nucleotides. Note 
that by construction of (X) , the labels of the vertices alter-
nate between nucleotides and dinucleotides. However, there 
are only 4 different bases in the alphabet  ; hence, 2 of the 
vertices must have the same label which yields a cycle in 
(X) , in contradiction to circularity. Thus, 1 ≤ lmax(X) ≤ 8.

Claim (2): Let X be a self-complementary circular code.
(i) Assume that lmax(X) ≥ 4 is odd. By construction of 

(X) , any path in (X) starts with either a nucleotide or a 
dinucleotide. Moreover, the vertices of the path alternate 
between nucleotides and dinucleotides. Thus, if lmax(X) is 
odd, then a longest path in (X) must either be of the form

starting with a nucleotide l
1
 and ending with a dinucleotide 

dn or

starting with a dinucleotide d
1
 and ending with a nucleotide 

ln . In fact, the following argument shows that actually both 
cases hold. Assume without loss of generality that a longest 
path is of the first form (I). By self-complementarity, we 
then obtain a complementary and reversed path

(I) l
1
→ d

1
→ l

2
→ d

2
→ ⋯ → dn−1 → ln → dn

(II) d
1
→ l

1
→ d

2
→ l

2
→ ⋯ → ln−1 → dn → ln

Table 1   Growth function of 
self-complementary circular 
codes X of even cardinality 
n = 2, 4,… , 20 as a function 
of the longest path length 
l
max

(X) = 1,… , 8 in their 
associated graph (X)

l
max n = 2 n = 4 n = 6 n = 8 n = 10 n = 12 n = 14 n = 16 n = 18 n = 20

1 12 8 0 0 0 0 0 0 0 0
2 16 202 556 642 396 152 36 4 0 0
3 0 16 152 336 280 80 0 0 0 0
4 0 108 1344 5808 12,048 14,032 9800 4116 964 96
5 0 0 0 0 0 0 0 0 0 0
6 0 0 68 684 2352 3896 3568 1872 532 64
7 0 0 0 0 0 0 0 0 0 0
8 0 0 56 824 4024 9104 10,920 7248 2536 368
Total 28 334 2176 8294 19,100 27,264 24,324 13,240 4032 528

Fig. 5   Growth function of self-complementary circular codes X of 
even cardinality n = 2, 4,… , 20 as a function of the longest path 
length l

max
(X) = 1,… , 8 in their associated graph (X)

(III) �⃖�������c(dn) → c(ln) →
�⃖����������c(dn−1) → ⋯ →

�⃖�������c(d
2
) → c(l

2
) → �⃖�������c(d

1
) → c(l

1
).
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Since we have assumed that lmax(X) ≥ 4 in (I), there are 
at least 3 nucleotides l

1
, l
2
, l
3
,… appearing. By circular-

ity of the code X, all these nucleotides have to be differ-
ent since otherwise the path would contain a cycle. Simi-
larly, the path (III) has also at least 3 different nucleotides 
c(ln), c(ln−1), c(ln−2),… . However, there are only 4 nucleo-
tides in the alphabet  , so there must be i, j ≤ n such that 
li = c(lj) . Since the path (I) starts with a nucleotide and the 
path (III) starts with a dinucleotide, the two paths

must have different lengths. Without loss of generality, 
assume that (III�) is the longer path, but then the path

has length greater than lmax(X) —a contradiction.
(ii) The following Examples 4.3, 4.4 and 4.5 show that 

lmax(X) = 1, 2, 3 exist for self-complementary circular codes 
that are not maximal.

Claim (3): Let X be a maximal self-complementary cir-
cular code.

(i) If lmax(X) ≤ 2 is true then X is comma-free. However, 
there are no maximal self-complementary comma-free codes 
(Table 7 in Michel et al. 2008). Thus, according to the claim 
(2), lmax(X) ∈ {3, 4, 6, 8}.

(ii) Assume now that lmax(X) = 3 . By maximality and 
circularity, X must contain exactly one element in each 
equivalence class {N

1
N
2
N
3
,N

2
N
3
N
1
,N

3
N
1
N
2
} for every tri-

nucleotide N
1
N
2
N
3
 . Thus, X must contain one trinucleotide 

from {AAT ,ATA, TAA} and one complementary trinucleotide 
from {ATT , TTA, TAT} . It is easy to see that each combina-
tion yields a path of the form A → d

1
→ T  or T → d

1
→ A 

for some dinucleotide d
1
 . Similarly, we get a path of the 

form C → d
2
→ G or G → d

2
→ C for some dinucleotide 

d
2
 . Without loss of generality, assume that A → d

1
→ T  

and C → d
2
→ G are paths in (X) . Clearly, the four tri-

nucleotides Ad
1
, d

1
T ,Cd

2
, d

2
G are all different; hence, 

X� = X�{Ad
1
, d

1
T ,Cd

2
, d

2
G} has 16 elements. Assume that 

there is a trinucleotide dC ∈ X� , d being a dinucleotide, and 
then also Gc(d) ∈ X� by self-complementarity. So we get a 
path d → C → d

2
→ G → c(d) of length 4—a contradiction.

Similarly, we cannot have trinucleotides of the form 
dA, Td,Gd ∈ X� . So no trinucleotide in X′ starts with 
T or G and no trinucleotide ends with C or A. Hence, 
X� ⊆ S = {N

1
N
2
N
3
∣ N

2
∈ ,N

1
∈ {A,C},N

3
∈ {G,T}}. 

Clearly, ∣ S ∣= 16 . However, the 4 tr inucleotides 

(I�) l
1
→ d

1
→ l

2
→ d

2
→ ⋯ → di−1 → li

(III�) �⃖�������c(dn) → c(ln) →
�⃖����������c(dn−1) → ⋯ →

�⃖������c(dj) → c(lj)

�⃖�������c(dn) → c(ln) →
�⃖����������c(dn−1) → ⋯ →

�⃖������c(dj) → c(lj) = li → di → ⋯ → dn−1 → ln → dn

Ad
1
, d

1
T ,Cd

2
, d

2
G are also in S, but excluded from X′ , so 

∣ X� ∣≤ 12 —a contradiction. 	�  □

Example 4.3  The code X
3
= {ACT ,AGT} of size 2 is a 

self-complementary circular code with longest path length 
lmax(X3

) = 1 , e.g., A → CT  , AG → T  , etc. (Figure 6).

ACT GT

AC T AG

Fig. 6   Graph (X
3
) of the self-complementary circular code 

X
3
= {ACT ,AGT} of size 2 with longest path length l

max
(X

3
) = 1

A CG

C

GT

TC

G AG

AC

T

CT

GA

Fig. 7   Graph (X
4
) of the self-complementary circular code 

X
4
= {ACG,CGT ,CTC,GAG} of size 4 with longest path length 

l
max

(X
4
) = 2

A AC

CC

C

AG

TG

G GT

TT

AA

CA

CT

GG

T

Fig. 8   Graph (X
5
) of the self-complementary circular code 

X
5
= {AAC,ACC,CAG,CTG,GGT ,GTT} of size 6 with longest path 

length l
max

(X
5
) = 3
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Example 4.4  The code X
4
= {ACG,CGT ,CTC,GAG} of size 

4 is a self-complementary circular (even comma-free) code 
with longest path length lmax(X4

) = 2 , e.g., A → CG → T  , 
CT → C → GT  , GA → G → AG , etc. (Figure 7).

Example 4.5  The code X
5
= {AAC,ACC,CAG,CTG,

GGT ,GTT} of size 6 is a self-complementary circu-
lar code with longest path length lmax(X5

) = 3 , e.g., 
A → AC → C → AG , CA → C → GT → T  , etc. (Fig. 8).

In summary, Theorem 4.2 proves that the longest paths 
for the maximal self-complementary circular codes are 
always symmetric (nucleotide–nucleotide l

1
→ ⋯ → ln or 

dinucleotide–dinucleotide d
1
→ ⋯ → dn ), while the long-

est paths for the non-maximal self-complementary circular 
codes can in addition be asymmetric (nucleotide–dinucleo-
tide l

1
→ ⋯ → dn or dinucleotide–nucleotide d

1
→ ⋯ → ln).

The structure of longest paths in Examples 4.3, 4.4 and 
4.5 is not unique. Indeed, the longest paths can start with 
either a nucleotide or a dinucleotide. However, for the 
maximal comma-free codes, the longest path of length 2 
needs to start with a dinucleotide (see Theorem 4.8 below). 
For the convenience of the reader, Example 4.6 gives max-
imal self-complementary circular codes that have longest 
path lengths equal to 4, 6 and 8 (without displaying their 
associated graphs).

Example 4.6  The maximal self-complementary circular 
codes

(1)	 X
6
= {AAC,AAT ,ACC,ACT ,AGA,AGC,AGG,AGT ,

ATC,ATT ,CCT ,GAC,GAT ,GCC,GCT ,GGC,

GGT ,GTC,GTT , TCT} with lmax(X6
) = 4 has a longest 

path 

(2)	 X
7
= {AAG,AGG,CAA,CAG,CCA,CCG,CCT ,CGA,

CGG,CTA,CTG,CTT , TAA, TAG, TCA, TCG, TGA,

TGG, TTA, TTG} with lmax(X7
) = 6 has a longest path 

(3)	 X
8
= {AAC,AAG,AAT ,ACC,ACG,ACT ,AGC,AGT ,

ATC,ATT ,CGT ,CTT ,GAT ,GCC,GCT ,GGA,GGC,

GGT ,GTT ,TCC} with lmax(X8
) = 8 has a longest path 

The structure of the longest paths in Example 4.6 is 
not arbitrary. Indeed, the longest paths in the associated 
graphs of maximal self-complementary circular codes 
have a unique structure, as shown in Theorem 4.7.

AG → A → AC → C → CT;

C → CT → T → CA → A → AG → G;

GG → A → AC → G → AT → C → GT → T → CC.

Theorem 4.7  Let X ⊆ 3 be a maximal self-complementary 
trinucleotide circular code. Then the following statements 
hold

(1) If lmax(X) = 4 , then the longest paths are of the form 
d
1
→ l

1
→ d

2
→ l

2
→ d

3
;

(2) If lmax(X) = 6 , then the longest paths are of the form 
l
1
→ d

1
→ l

2
→ d

2
→ l

3
→ d

3
→ l

4
;

(3) If lmax(X) = 8 , then the longest paths are of the form 
d
1
→ l

1
→ d

2
→ ⋯ → d

4
→ l

4
→ d

5

where the nucleotide li ∈  and the dinucleotide di ∈ 2 for 
any i.
Proof  See “Appendix.” 	�  □

We now turn to the comma-free codes. By Theorem 2.3, 
any comma-free code satisfies lmax(X) = 2 . Theorem 4.8 
below will show that the longest paths always have to 
start and end with dinucleotides if the comma-free code is 
maximal.

Theorem  4.8  Let X ⊆ 3 be a maximal trinucleotide 
comma-free code. Then lmax(X) = 2 and the longest paths 
are of the form d

1
→ l

1
→ d

2
 where the nucleotide l

1
∈  

and the dinucleotides d
1
, d

2
∈ 2.

Proof  Let lmax(X) = 2 and assume that l
1
→ d

1
→ l

2
 is the 

maximal path in (X) . Clearly, l
1
≠ l

2
 and there is no trinu-

cleotide in X starting with l
2
 or ending with l

1
 since otherwise 

the path could be extended. Let b
1
, b

2
 be the remaining 2 

nucleotides. By maximality, X must contain one trinucleo-
tide of the class {l

1
l
1
b, bl

1
l
1
, l
1
bl

1
} for each nucleotide b ≠ l

1
 . 

Since trinucleotides ending in l
1
 are forbidden, we conclude 

that l
1
l
1
l
2
 , l

1
l
1
b
1
 and l

1
l
1
b
2
 are in X. Similarly, it follows that 

l
1
l
2
l
2
 , b

1
l
2
l
2
 and b

2
l
2
l
2
 are in X. So l

1
l
1
l
2
 and l

1
l
2
l
2
 are in X 

and yield the path l
1
→ l

1
l
2
→ l

2
 . Now consider the class 

{l
1
l
2
b
1
, b

1
l
1
l
2
, l
2
b
1
l
1
} . Again by maximality, one of the tri-

nucleotides of this class must be in X. However, l
2
b
1
l
1
 is 

excluded since it starts with l
2
 and ends with l

1
 . If l

1
l
2
b
1
∈ X 

then we get the path l
1
→ l

1
l
2
→ b

1
 . Hence, no trinucleotide 

in X is allowed to start with b
1
 but b

1
l
2
l
2
∈ X —a contradic-

tion. Similarly, b
1
l
2
l
2
∈ X yields a contradiction. 	�  □

In the next section, we will show that the length of the 
reading frame of a circular code can be deduced from the 
longest path in the associated graph.
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The reading frame of circular codes

Circular codes do not always recognize a frameshift imme-
diately, but may be only after reading a few trinucleotides. 
From the formal definition, in a sequence consisting entirely 
of trinucleotides from a given circular code X, there are arbi-
trarily long subsequences that could be read in two ways, 
namely in the reading (correct) frame and also in the frames 
1 or 2, respectively. We will show that the reading in two 
frames is impossible and prove that the length of such sub-
sequences is bounded. We will prove that this bound, called 
the reading frame number, is determined by the longest path 
in the graph (X) associated with X. Moreover, most impor-
tantly, we will show that the reading frame number of a cir-
cular code even allows to retrieve the reading frame in arbi-
trary sequences of trinucleotides whenever a subsequence of 
at least five consecutive trinucleotides from X (called an X 
motif) is read. This supports strongly the idea that the ribo-
some may retrieve the reading frame using X motifs from the 
circular code X identified in genes (detailed in “Application: 
Reading frame of the maximal C3 self-complementary cir-
cular code X identified in genes” section).

Definition 5.1  Let X ⊆ 3 be a trinucleotide code and 
b
1
⋯ bn a sequence of nucleotides where bi ∈ B . A possible 

X-frame for the sequence b
1
⋯ bn is a division

where l ≥ 0 , ci ∈ X for i = 1,… , l and tb ∈ {�, b
1
, b

1
b
2
} and 

te ∈ {�, bn−1bn, bn} , � being the empty word.

Note that for l = 0 in the above Definition 5.1, we include 
the case b

1
b
2
b
3
b
4
 for which tb = b

1
b
2
 and te = b

3
b
4
 is a pos-

sible X-frame.

Example 5.2  Let X = {ACG,CGT , TAT ,ATG,GAC} . Then 
the sequence ACG​TAT​GAC​ has 2 possible X-frames, namely

and

Remark 5.3  From the above Definition 5.1, we require that 
the middle part in a possible X-frame consists of trinucleo-
tides from the code X (may be empty), but we do not make 
any hypothesis on the beginning and the end of the sequence, 
i.e., we do not require that the beginning of the sequence is 
a suffix of a trinucleotide of X and also that the end of the 
sequence does not need to be a prefix of a trinucleotide of X. 
This approach contrasts the notion of unambiguous words 
defined in Michel (2012) and makes the notion of X-frame 

b
1
⋯ bn = tbc1 ⋯ clte

ACG TAT GAC with tb = � = te

A CGT ATG AC with tb = A, te = AC.

and later on reading frame applicable to arbitrary sequences, 
i.e., not entirely consisting of trinucleotides from X.

We have a first observation.

Observation 5.4  Let X ⊆ 3 be a trinucleotide circular 
code and b

1
⋯ bk a sequence of nucleotides where bi ∈ B . 

If we assume that b
1
⋯ bk has 2 different possible X-frames

with ui, u�i ∈ X  and tb, te, t�b, t
�
e
∈
(

{�} ∪  ∪ 2
)

 , then 
there exists a path in (X) associated with the overlapping 
sequences u

1
⋯ ul and u′

1
⋯ u′

m
 . The word associated with 

this path (see Definition 5.6 below) covers exactly the small-
est subsequence of b

1
⋯ bk that contains both u

1
⋯ ul and 

u′
1
⋯ u′

m
.

Example 5.5  In the above Example 5.2, we obtain the path 
A → CG → T → AT → G → AC.

Before we proceed, we need a few more definitions. 
Recall from Definition 4.1 that the arrow-length la(p) of 
a path p is the number of edges in this path. For the sake 
of completeness, we include this definition again in the 
next definition.

Definition 5.6  Let X ⊆ 3 be a trinucleotide circular code 
and (X) its associated graph. Let p ∶ t

1
→ ⋯ → tn be a path 

in (X) where ti ∈  ∪ 2 for i = 1,… , n . Then

•	 the word associated with p is defined as w(p) = t
1
⋯ tn , 

the concatenation of the labels of p;
•	 the arrow-length la(p) is defined as n − 1 (see Definition 

4.1);
•	 the word-length lw(p) is defined as ∣ w(p) ∣ , the length of 

the word associated with p.

We would like to remark that in general two paths of 
the same arrow-length can have different word-lengths, as 
shown in Example 5.7.

Example 5.7  A → CG → T with la(p) = 2 and lw(p) = 4 , and 
AT → G → TT  with la(p) = 2 but lw(p) = 5.

However, this case only happens if the two paths start 
with different labels, i.e., one is a nucleotide and the other 
one is a dinucleotide. Since we know that the different 
paths of maximal arrow-length in a maximal self-comple-
mentary circular code always have the same structure (see 
Theorem 4.7 above), we deduce that a path of maximal 
arrow-length in a maximal self-complementary circular 
code is also a path of maximal word-length and vice versa.

tbu1 ⋯ ulte and t′
b
u′
1
⋯ u′

m
t′
e
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Definition 5.8  Let X ⊆ 3 be a trinucleotide circular code. 
We define the reading frame number nX of X as

For any sequence b
1
⋯ bn as in the above Definition 5.8, 

there is not always a possible X-frame, but the main point 
is that if there is one, e.g., in a subsequence of a sequence 
of trinucleotides of a circular code X, we want it to be 
unique. We start with a general upper bound for the read-
ing frame number of any circular code.

Theorem 5.9  Let X ⊆ 3 be a trinucleotide circular code 
and (X) its associated graph. Then the reading frame num-
ber nX satisfies nX ≤ 2 ⋅ lmax(X) + 3.

Proof  Assume that there is a sequence b
1
⋯ bn of nucleo-

tides that has 2 different possible X-frames: tbu1 ⋯ ulte and 
t′
b
u′
1
⋯ u′

m
t′
e
 with ui, u�i ∈ X and tb, te, t�b, t

�
e
∈
(

{�} ∪  ∪ 2
)

 . 
Then the 2 overlapping sequences u

1
⋯ ul and u′

1
⋯ u′

m
 cover 

at least n − 2 nucleotides of the sequence b
1
⋯ bn . Each pair 

of overlapping trinucleotides from the 2 sequences u
1
⋯ ul 

and u′
1
⋯ u′

m
 yield a path of length 2 in (X) . Putting these 

paths together we cannot exceed the arrow-length la(p) of a 
maximal path in (X) (which exists by Theorem 4.2 since X 
is circular). Thus in total, we obtain n ≤ 2 ⋅ lmax(X) + 3 . 	
� □

The above proof can easily be generalized to circular 
codes over any arbitrary finite alphabet and any arbitrary 
word-length.

Theorem 5.10  Let X ⊆ l be a circular code where  is 
a finite alphabet, l is a positive integer, and (X) its asso-
ciated graph. Then the reading frame number nX satisfies 
nX ≤ int(

l

2
) ⋅ lmax(X) + l where int( n

2
) denotes the smallest 

natural number greater than or equal to n
2
.

Proof  Clear. 	�  □

We now determine explicitly the reading frame numbers 
for maximal self-complementary circular codes.

Theorem 5.11  Let X ⊆ 3 be a maximal self-complemen-
tary trinucleotide circular code and (X) its associated 
graph. Let p = pmax(X) be a path of maximal arrow-length 

nX ∶= min{n ∈ ℕ ∣ for all sequences of nucleotides b
1
⋯ bn

there is at most one possible X-frame for b
1
⋯ bn}.

(and hence word-length) in (X) , and let lw(p) be its word-
length. Then the following statements about the reading 
frame number nX are true

(1) nX = lw(p) + 2 ,       if p = d
1
→ b

1
→ ⋯ → bk or 

p = b
1
→ d

1
→ ⋯ → dk;

(2) nX = lw(p) + 1 ,    if p = d
1
→ b

1
→ ⋯ → dk;

(3) nX = lw(p) + 3 ,    if p = b
1
→ d

1
→ ⋯ → bk,

where the nucleotide bi ∈  and the dinucleotide di ∈ 2 
for any i.
Proof  See “Appendix.” 	�  □

In Michel (2012), a slightly different definition of the 
reading frame number nX was used where the words tb 
and te in a possible X-frame have to be suffix and prefix, 
respectively, of some trinucleotides of X. This definition 
is a stronger requirement and thus yields smaller reading 
frame numbers nX . For instance, nX = 13 nucleotides for 
the maximal C3 self-complementary code X from (1.1), 
nX = 3 nucleotides for the comma-free codes and nX = 2 
nucleotides for the strong comma-free codes.

Application: Reading frame of the maximal 
C3 self‑complementary circular code X 
identified in genes

The longest paths in (X) (Fig. 1) of the maximal C3 self-
complementary circular code X (1.1) identified in genes are:

T h e s e  n i n e  l o n ge s t  p a t h s  h ave  t h e  fo r m 
p = d

1
→ b

1
→ ⋯ → dk with lw(p) = 14 nucleotides. Thus, 

by application of Claim (2) of Theorem 5.11, the reading 
frame number nX of X (1.1) is equal to 15 nucleotides (5 
trinucleotides).

[CA,G,GT ,A,AT ,T ,AC,C,AG],

[CA,G,GT ,A,AT , T ,AC,C, TC],

[CA,G,GT ,A,AT , T ,AC,C, TG],

[CT ,G,GT ,A,AT , T ,AC,C,AG],

[CT ,G,GT ,A,AT , T ,AC,C, TC],

[CT ,G,GT ,A,AT , T ,AC,C, TG],

[GA,G,GT ,A,AT , T ,AC,C,AG],

[GA,G,GT ,A,AT , T ,AC,C, TC],

[GA,G,GT ,A,AT , T ,AC,C, TG].

ATG TAA

Xmo�f Xmo�f Xmo�f

Fig. 9   A model of reading frame retrieval in genes using the X circular code motifs, i.e., motifs from the circular code X (1.1)
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A model of frame retrieval was proposed in Fimmel 
et al. (2017) where the ribosome pairs with the X motifs 
located at different positions in the genes (Fig. 9).

The X motifs from the circular code X (1.1) occur 
preferentially in genes compared to genomes (noncoding 
regions of eukaryotes) with a factor of about 8 (Tables 4 
and 5, Figures 7 and 8 in Soufi and Michel (2016)). Fur-
thermore, very recent results have shown an enrichment of 
X motifs in the genes of the yeast Saccharomyces cerevi-
siae (Michel et al. 2017). Precisely, several basic statistical 
analyses comparing X motifs and R motifs (random motifs 
from random codes) demonstrated that:

(i) No significant difference is observed between the 
frequencies of X and R motifs in the noncoding regions 
of S. cerevisiae.

(ii) The frequency of X motifs is significantly greater 
than that of R motifs in the genes (protein-coding regions) 
of S. cerevisiae. This property is true for all cardinalities 
of X motifs (from 4 to 20 trinucleotides) and for all 16 
chromosomes of S. cerevisiae.

(iii) The X motifs in the three frames of S. cerevisiae 
genes occur more frequently in the reading frame, regardless 
of their cardinality or their length.

(iv) The ratio of X genes, i.e., genes with at least one 
X motif, to non-X genes in the set of verified genes is sig-
nificantly different to that observed in the set of putative or 
dubious genes with no experimental evidence.

The ribosome contains the circular code information 
for pairing with the X motifs in genes. Indeed, the X motifs 
are also identified in tRNAs of prokaryotes and eukaryotes 
(Michel 2012, 2013) and in rRNAs of prokaryotes (16S) and 
eukaryotes (18S), in particular in the ribosome decoding 
center where the universally conserved nucleotides G530, 
A1492 and A1493 are included in the X motifs (Michel 2012; 
Soufi and Michel 2014, 2015). Pairing of X motifs between 
mRNAs–rRNAs, mRNAs–tRNAs and rRNAs–tRNAs, 
shown with a 3D visualization of the ribosome (Michel 
2012, 2013; Soufi and Michel 2014, 2015), may be involved 
in maintaining and synchronizing the reading frame during 
the translation process. However, the experimental biologi-
cal mechanism by which the ribosome uses the X motifs for 
maintaining and synchronizing the reading frame during 
genome decoding and protein synthesis is still unknown.

Conclusion

Self-complementary circular codes are investigated 
here with the graph theory approach recently formulated 
in Fimmel et  al. (2016). Self-complementary circular 
codes are involved in several pairing genetic processes, 
mainly DNAs–DNAs, DNAs–mRNAs, mRNAs–rRNAs, 

mRNAs–tRNAs and rRNAs–tRNAs. For the first time, all 
the self-complementary trinucleotide circular codes (words 
of 3 letters on a 4-letter alphabet) are identified here and 
several new mathematical properties are proven.

A code X is self-complementary if and only if its graph 
(X) has a self-complementary set of vertices and for any 
vertex v, the outgoing degree d+(v) equals the ingoing degree 
d−( �⃖����c(v)) of the complementary vertex. This statement is true 
for the self-complementary circular codes of sizes 18 and 
20 trinucleotides and for the self-complementary comma-
free codes of sizes 14 and 16 trinucleotides. (There are no 
self-complementary comma-free codes of sizes 18 and 20 
trinucleotides.) For the self-complementary circular codes 
of sizes strictly less than 18 trinucleotides and for the self-
complementary comma-free codes of sizes strictly less 
than 14 trinucleotides, this statement is not true. Despite 
a deep investigation from the authors, no explanation has 
been found for this interesting graph combinatorial problem 
which therefore remains open.

The lengths of the longest paths belong to the set 
{1, 2, 3, 4, 6, 8} for the self-complementary circular codes 
and to the set {4, 6, 8} for the 528 maximal (of size 20) self-
complementary circular codes. The growth function of all 
self-complementary circular codes is also given. The struc-
ture of the longest paths is also determined for the maximal 
self-complementary circular codes.

The longest paths in the graphs (X) determine the read-
ing frame of self-complementary circular codes X. By apply-
ing this new theorem, the reading frame of the circular code 
X (1.1) identified in genes is retrieved after 15 nucleotides, 
i.e., 5 trinucleotides. The importance of this result lies in the 
fact that the reading frame number of a circular code even 
allows to retrieve the reading frame in arbitrary sequences 
of trinucleotides whenever a subsequence of at least 5 con-
secutive trinucleotides from X (called an X motif) is read. 
This theoretical result again suggests that the ribosome may 
retrieve the reading (correct) frame (circularity property of 
X) by using the X motifs from the circular code X in genes 
(Michel et al. 2017 and Fig. 9) which can pair (self-comple-
mentary property of X) with the X motifs found in tRNAs 
and rRNAs, in particular in the ribosome decoding center 
(Michel 2012, 2013; Soufi and Michel 2014, 2015). How-
ever, the experimental biological mechanism by which the 
ribosome involves the X motifs during genome decoding and 
protein synthesis is still unknown.

Appendix

Proof of Theorem 4.7  Claim (1): Let lmax(X) = 4 and assume 
that l

1
→ d

1
→ l

2
→ d

2
→ l

3
 is a longest path in (X) . Since 

the path is maximal, there is no trinucleotide of the form 
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dl
1
 and no trinucleotide of the form l

3
d in X. It follows that 

c(l
3
) = l

1
 and d

1
, d

2
∈ {l

2
, c(l

2
)}2 . Note that all the nucleo-

tides l
1
, l
2
, l
3
 must be different by circularity. Thus, we have 

4 possibilities for d
1
, d

2
 , namely l

2
l
2
 , l

2
c(l

2
) , c(l

2
)l
2
 and 

c(l
2
)c(l

2
) . As l

2
l
2
l
2
∉ X by circularity, we have the follow-

ing options for the 2 trinucleotides d
1
l
2
∈ X and l

2
d
2
∈ X

If d
1
l
2
 or l

2
d
2
 is equal to l

2
c(l

2
)l
2
 then self-complementarity 

yields c(l
2
)l
2
c(l

2
) ∈ X and the word c(l

2
)l
2
c(l

2
)l
2
c(l

2
)l
2
 con-

tradicts circularity. Excluding the combinations c(l
2
)l
2
l
2
 , 

l
2
l
2
c(l

2
) and c(l

2
)c(l

2
)l
2
 , l

2
c(l

2
)c(l

2
) since the trinucleotides 

are obviously circular permutations of each other, only 2 
combinations remain: c(l

2
)l
2
l
2
 , l

2
c(l

2
)c(l

2
) and c(l

2
)c(l

2
)l
2
 , 

l
2
l
2
c(l

2
) . But also here, self-complementarity yields a contra-

diction to circularity since, for example, the complementary 
trinucleotide of c(l

2
)c(l

2
)l
2
 is in the same equivalence class 

as l
2
l
2
c(l

2
).

Claim (2):  Let  lmax(X) = 6 and assume that 
d
1
→ l

1
→ d

2
→ l

2
→ d

3
→ l

3
→ d

4
 is a longest path in 

(X) . By self-complementarity, there is the reversed com-
plemented path

Now, the middle nucleotides l
2
 and c(l

2
) of the 2 paths are 

either the pair A and T, or C and G. Therefore, it suffices to 
show that there are paths A → d → T  or T → d → A and 
C → d → G or G → d → C in (X) ; since then, we will 
obtain a path of length 8 combining the 2 paths, e.g.,

contradicting lmax(X) = 6 . However, by maximality, 
the code X must contain exactly one trinucleotide of the 
class {ATT , TTA, TAT} and its complementary trinucleo-
tide as well as exactly one trinucleotide from the class 
{GCC,CCG,CGC} and its complementary trinucleotide. It 
is easy to verify that in each case we obtain either a path 
of the form A → d → T  or T → d → A and C → d → G or 
G → d → C , e.g., if ATT ∈ X then also AAT ∈ X and we get 
the path A → AT → T  in (X).

Claim (3):  Let  lmax(X) = 8 and assume that 
l
1
→ d

1
→ l

2
→ d

2
→ l

3
→ d

3
→ l

4
→ d

4
→ l

5
 is the long-

est path in (X) . Then obviously, 2 out of the 5 nucleotides 
l
1
, l
2
, l
3
, l
4
, l
5
 must be equal, which yields a cycle in (X) 

contradicting the circularity of X. 	�  □

Proof of Theorem 5.11  Let X ⊆ 3 be a maximal self-comple-
mentary circular code and (X) its associated graph. Since X 

d
1
l
2
∶ l

2
c(l

2
)l
2

c(l
2
)l
2
l
2

c(l
2
)c(l

2
)l
2
;

l
2
d
2
∶ l

2
l
2
c(l

2
) l

2
c(l

2
)l
2

l
2
c(l

2
)c(l

2
).

�⃖�������c(d
4
) → c(l

3
) → �⃖�������c(d

3
) → c(l

2
) → �⃖�������c(d

2
) → c(l

1
) → �⃖�������c(d

1
).

d
1
→ l

1
→ d

2
→ l

2
→ d → c(l

2
) → �⃖�������c(d

2
) → c(l

1
) → �⃖�������c(d

1
)

is circular then (X) is acyclic, so it has a path p = pmax(X) 
of maximal length l(p).

Claim (1): Assume that p = d
1
→ b

1
→ ⋯ → bk , then 

any concatenation dibi ∈ X  . Choose any trinucleotide 
c = s

1
s
2
s
3
∈ X  . Then (d

1
b
1
)⋯ (dkbk)(s1s2s3) ∈ Xk+1 and 

hence (d
1
b
1
)⋯ (dkbk)s1 is a possible X-frame (for itself) 

with tb = � and te = s
1
 . Moreover, each concatenation bidi+1 

is also a trinucleotide in X, so d
1
(b

1
d
2
)⋯ (bk−1dk)bks1 is a 

second possible X-frame with tb = d
1
 and te = bks1 . Thus, 

nX ≥ lw(p) + 2 since the sequence d
1
b
1
⋯ dkbks1 has length 

lw(p) + 1.
Now assume that b

1
⋯ bk is a sequence of nucleotides and 

assume that k ≥ lw(p) + 2 but b
1
⋯ bk has 2 different possible 

X-frames. We have to show a contradiction to conclude that 
nX = lw(p) + 2 . Assume that tbu1 ⋯ ulte and t′

b
u′
1
⋯ u′

m
t′
e
 with 

ui, u
�
i
∈ X and tb, te, t�b, t

�
e
∈
(

{�} ∪  ∪ 2
)

 are the 2 different 
possible X-frames. Obviously, ∣ tbte ∣≤ 4 . If ∣ tbte ∣= 4 then 
by the difference of the 2 possible X-frames, we conclude 
that at least one of t′

b
 or t′

e
 has to have length ≥ 3 , a contra-

diction to the definition of possible X-frame, or ∣ t�
b
t�
e
∣≤ 3 . 

Hence, w.l.o.g. we assume that ∣ tbte ∣≤ 3 . Consequently, 
∣ u

1
⋯ ul ∣≥ k − 3 ≥ lw(p) + 2 − 3 = lw(p) − 1 and hence 

∣ u
1
⋯ ul ∣≥ lw(p) + 1 . We now have to distinguish cases:

(a)	 I f  ∣ tbte ∣≤ 1  t h e n  w e  e v e n  g e t 
∣ u

1
⋯ ul ∣≥ k − 1 ≥ lw(p) + 2 − 1 = lw(p) + 1 and hence 

∣ u
1
⋯ ul ∣≥ lw(p) . Thus, the path associated with the 2 

possible X-frames has word-length at least lw(p) + 1 , 
a contradiction to the maximality of lw(p) . In this 
case, the sequence u

1
⋯ ul could contain the sequence 

u′
1
⋯ u′

m
 as a subsequence.

(b)	 If ∣ tbte ∣≥ 2 then the second possible X-frame is at least 
shifted by one with respect to the first possible X-frame, 
i.e., it must extend the sequence u

1
⋯ ul to the left or 

to the right. In this case, the sequence u
1
⋯ ul cannot 

contain the sequence u′
1
⋯ u′

m
 as a subsequence. The 

path associated with the 2 possible X-frames has word-
length at least ∣ u

1
⋯ ul ∣ +1 ≥ lw(p) + 1 , again a con-

tradiction to the maximality of lw(p).

Thus, nX = l(p) + 2.
The case p = b

1
→ d

1
→ ⋯ → dk is symmetric and can 

be similarly dealt with.
Claim (2): Assume that p = d

1
→ b

1
→ ⋯ → dk  , 

then any concatenation dibi ∈ X  . As in Claim (1), 
(d

1
b
1
)⋯ (dk−1bk−1)dk is a possible X-frame (for itself) with 

tb = � and te = dk . Moreover, each concatenation bidi+1 is 
a trinucleotide in X, so d

1
(b

1
d
2
)⋯ (bk−2dk−1)(bk−1dk) is 

a second possible X-frame with tb = d
1
 and te = � . Thus, 

nX ≥ lw(p) since the sequence d
1
b
1
⋯ dk−1bk−1dk has length 

lw(p).
Now assume that b

1
⋯ bk is a sequence of nucleotides and 

assume that k ≥ lw(p) + 1 but b
1
⋯ bk has 2 different possible 
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X-frames: tbu1 ⋯ ulte and t′
b
u′
1
⋯ u′

m
t′
e
 with ui, u�i ∈ X and 

tb, te, t
�
b
, t�
e
∈
(

{�} ∪  ∪ 2
)

 . As in Claim (1), we assume 
w.l.o.g. that ∣ tbte ∣≤ 3 . We distinguish cases:

(a)	 If ∣ tbte ∣= 0 then ∣ u
1
⋯ ul ∣≥ lw(p) + 1 and u′

1
⋯ u′

m
 is 

a subsequence of u
1
⋯ ul . Thus, the path associated 

with the 2 possible X-frames has word-length lw(p) + 1 
with the associated word u

1
⋯ ul , a contradiction to the 

maximality of lw(p).
(b)	 If ∣ tbte ∣= 1 then ∣ u

1
⋯ ul ∣≥ lw(p) . If the second pos-

sible X-frame is shifted by one with respect to the 
first one, then the path associated with the 2 possible 
X-frames has word-length lw(p) + 1 , again a contradic-
tion to the maximality of lw(p) . If the second possible 
X-frame is shifted by two, then the path associated with 
the 2 possible X-frames has word-length lw(p) . How-
ever, in this case, the path starts with a dinucleotide and 
ends with a nucleotide, a contradiction to the structure 
of maximal paths which have to start and end with a 
dinucleotide.

(c)	 If ∣ tbte ∣= 2 then ∣ u
1
⋯ ul ∣≥ lw(p) − 1 . Again, we have 

to distinguish cases:

	 (i)	 ∣ tb ∣= 2 and ∣ te ∣= 0 . Then the associated path 
to the 2 possible X-frames has word-length 
lw(p) and starts with a nucleotide but ends with 
a dinucleotide, a contradiction to the structure 
of maximal paths, or has word-length lw(p) + 1 , 
a contradiction to the maximality of lw(p).

	 (ii)	 ∣ tb ∣= 0 and ∣ te ∣= 2 , as (i).
	 (iii)	 ∣ tb ∣= 1 and ∣ te ∣= 1 . As above, if the second 

possible X-frame is shifted by one, then the path 
associated with the 2 possible X-frames has 
word-length lw(p) again starting with a nucleo-
tide ( u

1
 ) and ending with a dinucleotide, a con-

tradiction to the structure of maximal paths. If 
the second possible X-frame is shifted by two, 
then again the path associated with the 2 possi-
ble X-frames has word-length lw(p) starting with 
a nucleotide ( u′

1
 ) and ends with a dinucleotide.

(d)	 If ∣ tbte ∣= 3 then ∣ u
1
⋯ ul ∣≥ lw(p) − 2 . We distinguish 

two symmetric cases:

	 (i)	 ∣ tb ∣= 2 and ∣ te ∣= 1 . If the second possible 
X-frame is shifted by one, then the path asso-
ciated with the 2 possible X-frames has word-
length lw(p) + 1 , a contradiction to the maximal-
ity of lw(p) , or has word-length lw(p) but starting 
with a nucleotide and ending with a dinucleo-
tide, a contradiction to the structure of maximal 
paths. If the second possible X-frame is shifted 
by two, then either the path associated with the 

2 possible X-frames has word-length lw(p) + 1 , a 
contradiction to the maximality of lw(p) , or has 
word-length lw(p) − 1 starting with a nucleotide 
and ending with a nucleotide. But this case can-
not exist unless the arrow-length of this path is 
at least the arrow-length of p, a contradiction to 
the maximality of p.

	 (ii)	 ∣ tb ∣= 1 and ∣ te ∣= 2 , as (i).

Claim (3):  Assume that  p = b
1
→ d

1
→ ⋯ → bk  , 

then any concatenation bidi ∈ X  . Choose any 2 tri-
n u c l e o t i d e s  c = s

1
s
2
s
3
, c� = s�

1
s�
2
s�
3
∈ X  .  T h e n 

(s�
1
s�
2
s�
3
)(b

1
d
1
)⋯ (dkbk)(s1s2s3) ∈ Xk+2  a n d  h e n c e 

s�
3
(b

1
d
1
)⋯ (bk−1dk−1)bks1 is a possible X-frame (for itself) 

with tb = s�
3
 and te = bks1 . Moreover, each concatenation 

dibi+1 is a trinucleotide in X, so s�
3
b
1
(d

1
b
2
)⋯ (dk−1bk)s1 is a 

second possible X-frame with tb = s�
3
b
1
 and te = s

1
 . Thus, 

nX ≥ lw(p) + 3 since the sequence s�
3
b
1
d
1
⋯ bk−1dk−1bks1 has 

length lw(p) + 2.
Now assume that b

1
⋯ bk is a sequence of nucleo-

tides with k ≥ lw(p) + 3 but b
1
⋯ bk  has 2 differ-

ent possible X-frames: tbu1 ⋯ ulte and t′
b
u′
1
⋯ u′

m
t′
e
 with 

ui, u
�
i
∈ X  and  tb, te, t

�
b
, t�
e
∈
(

{�} ∪  ∪ 2
)

 .  As  in 
Claim (1), we conclude that w.l.o.g. ∣ tbte ∣≤ 3 and hence 
∣ u

1
⋯ ul ∣≥ k − 3 ≥ lw(p) + 3 − 3 = lw(p) . Similar arguments 

as above show that the path associated with the 2 possible 
X-frames has word-length greater than lw(p) , in contradiction 
to the maximality of p and lw(p) . 	�  □
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