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A B S T R A C T

A code 𝑋 is (⩾𝑘)-circular if every concatenation of words from 𝑋 that admits, when read on a circle, more
than one partition into words from 𝑋, must contain at least 𝑘 + 1 words. In other words, the reading frame
retrieval is guaranteed for any concatenation of up to 𝑘 words from 𝑋. A code that is (⩾𝑘)-circular for all
integers 𝑘 is said to be circular. Any code is (⩾0)-circular and it turns out that a code of trinucleotides is
circular as soon as it is (⩾4)-circular. A code is 𝑘-circular if it is (⩾𝑘)-circular and not (⩾𝑘 + 1)-circular.
Due to the explosive combinatorics of trinucleotide 𝑘-circular codes, we developed three classes of algorithms
based on: (i) the smallest directed cycles (directed girth) in graphs; (ii) the eigenvalues of matrices; and
(iii) the files that incrementally save partial results. These different approaches also allow us to verify the
computational results obtained. We determine here the growth functions of trinucleotide 𝑘-circular codes, 𝑘
varying between 0 and 4, in the general case and in various particular cases: minimum, minimal, maximum,
self-complementary 𝑘-, (𝑘, 𝑘, 𝑘)- and self-complementary (𝑘, 𝑘, 𝑘)-circular.
1. Introduction

The concept of 𝑘-circular code was recently introduced (Fimmel
et al., 2020). It is less restrictive than the circular code concept. Indeed,
a circular code retrieves the reading frame for any concatenation of
words of the code written on a circle. A code is (⩾ 𝑘)-circular if any
concatenation of words of the code written on a circle that does not
retrieve the reading frame contains at least 𝑘 + 1 words, and it is 𝑘-
circular if in addition some concatenation of 𝑘 + 1 words of the code
written on a circle admits several decompositions into words of the
code. It follows that a 𝑘-circular code cannot be (⩾ 𝑘 + 1)-circular but
must be (⩾𝑗)-circular for all 𝑗 ≤ 𝑘. A code is circular if it is (⩾𝑘)-circular
for any non-negative integer 𝑘. It was proved that 𝑘 is bounded (Fimmel
et al., 2020), in the sense that the number of possible values 𝑘 for which
there exists a 𝑘-circular code is bounded in terms of the length of the
words in the code and the size of the alphabet used.

On the genetic alphabet , there are 264 ≈ 1019 trinucleotide
codes (including the empty set) ranging from the 64 trinucleotides of
cardinality 1 to the genetic code of cardinality 64. The theory of trin-
ucleotide 𝑘-circular codes allows us to describe any trinucleotide code
of any cardinality among these 264 ones according to their circularity
property, i.e. their property of reading frame retrieval. Indeed, three
classes can be defined as follows:

• trinucleotide codes with no circularity: no sequence generated by
such a trinucleotide code can retrieve the reading frame;
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• trinucleotide codes with a partial circularity: some sequences
generated by such a trinucleotide code cannot retrieve the reading
frame, but some other sequences can retrieve the reading frame;

• trinucleotide codes with a complete circularity: any sequence
generated by such a trinucleotide circular code can retrieve the
reading frame.

In the companion article (Michel and Sereni, 2022), we detail
this classification and analyse the ambiguous sequences for each class
of trinucleotide 𝑘-circular codes with 𝑘 ∈ {0, 1, 2, 3}. Furthermore,
in order to consider the different cases of ambiguous sequences, we
derive a new and general formula to measure the reading frame loss,
whatever the trinucleotide 𝑘-circular code. This formula allows us to
study the evolution of any trinucleotide 𝑘-circular code of (maximal)
cardinality 20 to the genetic code, based on the reading frame retrieval
property. This approach is applied to analyse the evolution of the
trinucleotide circular code 𝑋 observed in genes to the genetic code.
In addition, we analyse balanced 𝑘-trinucleotide codes, i.e. of cardi-
nality 4, 8, 12, 16 and 20 having the same number of each nucleotide.
We develop a general mathematical method to compute the number
of balanced trinucleotide codes of each size, which also applies to
self-complementary trinucleotide codes. We establish and quantify a re-
lation between this balanceness property and the self-complementarity
property. The combinatorial hierarchy of trinucleotide 𝑘-circular codes
is updated with the growth function results. Finally, the numbers of
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amino acids coded by the trinucleotide 𝑘-circular codes are given
for the cases maximal, minimal, self-complementary 𝑘-, (𝑘, 𝑘, 𝑘)- and
self-complementary (𝑘, 𝑘, 𝑘)-circular.

In this theoretical article, we carry out here an extensive combi-
natorial study of the trinucleotide 𝑘-circular codes that constitute an
important class of 𝑘-circular codes. After having recalled the necessary
definitions and notations in Section 2 and the graph theorem associ-
ated to a 𝑘-circular code in Section 3, we present in Section 4 three
algorithms that we developed to determine the growth functions of
trinucleotide 𝑘-circular codes. In Section 5, several growth functions
for different classes of trinucleotide 𝑘-circular codes are identified: gen-
eral case, minimum, minimal, maximum, self-complementary, (𝑘, 𝑘, 𝑘)-
circular and self-complementary (𝑘, 𝑘, 𝑘)-circular.

2. Definitions and notations

We work with the genetic alphabet  ∶= {𝐴,𝐶,𝐺, 𝑇 }, which has
cardinality 4. An element 𝑁 of  is called nucleotide. A word over
the genetic alphabet is a sequence of nucleotides. A trinucleotide is
a sequence of three nucleotides, that is, an element of 3 using the
standard word-theory notation. If 𝑤 = 𝑁1 ⋯𝑁𝑠 and 𝑤′ = 𝑁 ′

1 ⋯𝑁 ′
𝑡

are two sequences of nucleotides of respective lengths 𝑠 and 𝑡, then
the concatenation 𝑤 ⋅ 𝑤′ of 𝑤 and 𝑤′ is the sequence 𝑁1 ⋯𝑁𝑠𝑁 ′

1 ⋯𝑁 ′
𝑡

composed of 𝑠 + 𝑡 nucleotides.
Given a sequence 𝑤 = 𝑁1𝑁2 ⋯𝑁𝑠 ∈ 𝑠 and an integer 𝑗 ∈

{0, 1,… , 𝑠− 1}, the circular 𝑗-shift of 𝑤 is the word 𝑁𝑗+1 ⋯𝑁𝑠𝑁1 ⋯𝑁𝑗 .
Note that the circular 0-shift of 𝑤 is 𝑤 itself. For example, if 𝑠 = 3
and hence 𝑤 = 𝑁1𝑁2𝑁3 is a trinucleotide, then its circular 0-shift
is 𝑤 itself, while its circular 1-shift and its circular 2-shift are 𝑁2𝑁3𝑁1
and 𝑁3𝑁1𝑁2, respectively. A sequence 𝑤′ of nucleotides is a circular
shift of 𝑤 if 𝑤′ is the circular 𝑗-shift of 𝑤 for some 𝑗 ∈ {0, 1,… , 𝑠 − 1}.
The elements in 3 can thus be partitioned into conjugacy classes,
where the conjugacy class of a trinucleotide 𝑤 ∈ 3 is the set of all
circular shifts of 𝑤. For instance, the conjugacy class of the trinu-
cleotide 𝐴𝐶𝐺 is {𝐴𝐶𝐺,𝐶𝐺𝐴,𝐺𝐴𝐶}. Notice that the conjugacy class of
a trinucleotide 𝑤 ∈ 3 has size 3 unless 𝑤 is one of the four periodic trin-
ucleotides, namely a trinucleotide in  ∶= {𝐴𝐴𝐴,𝐶𝐶𝐶,𝐺𝐺𝐺, 𝑇 𝑇𝑇 }, in
which case the conjugacy class has size 1.

Definition 2.1. Let  be the genetic alphabet.

• A trinucleotide code is a subset of 3, that is, a set of trinucleotides.
• If 𝑋 is a trinucleotide code and 𝑤 is a sequence of nucleotides,

then an 𝑋-decomposition of 𝑤 is a tuple (𝑥1,… , 𝑥𝑡) ∈ 𝑋𝑡 of
trinucleotides from 𝑋 such that 𝑤 = 𝑥1 ⋅ 𝑥2 ⋯ 𝑥𝑡.

We now formally define the notion of circularity of a code.

Definition 2.2. Let 𝑋 ⊆ 3 be a trinucleotide code.

• Let 𝑚 be a positive integer and let (𝑥1,… , 𝑥𝑚) ∈ 𝑋𝑚 be an 𝑚-
tuple of trinucleotides from 𝑋. A circular 𝑋-decomposition of the
concatenation 𝑐 ∶= 𝑥1 ⋯ 𝑥𝑚 is an 𝑋-decomposition of a circular
shift of 𝑐.

• Let 𝑘 be a non-negative integer. The code 𝑋 is (⩾𝑘)-circular if ev-
ery concatenation of trinucleotides from 𝑋 that admits more than
one circular 𝑋-decomposition contains at least 𝑘+1 trinucleotides.
In other words, 𝑋 is (⩾𝑘)-circular if for every 𝑚 ∈ {1,… , 𝑘} and
each 𝑚-tuple (𝑥1,… , 𝑥𝑚) of trinucleotides from 𝑋, the concate-
nation 𝑥1 ⋯ 𝑥𝑚 admits a unique circular 𝑋-decomposition. The
code 𝑋 is 𝑘-circular if 𝑋 is (⩾𝑘)-circular and not (⩾𝑘+1)-circular1.

• The code 𝑋 is circular if it is (⩾𝑘)-circular for all 𝑘 ∈ 𝐍.

1 We note here a discrepancy with the notation in some earlier works,
here ‘‘𝑘-circular’’ was used to mean what is here written (⩾ 𝑘)-circular; we
o however need this refined notation in this work.
2

‘

emark 2.3. Every trinucleotide code 𝑋 is trivially (⩾ 0)-circular.
urther, a trinucleotide code 𝑋 is (⩾ 1)-circular if and only if 𝑋 does

not contain a word and one of its circular shifts. This exactly means
that 𝑋 contains at most one word from each conjugacy class and none
of the periodic trinucleotides.

Here is an example to illustrate Definition 2.2.

Example 2.4. The trinucleotide code 𝑋 = {𝐴𝑇𝐺,𝐶𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶}
is 1-circular. Indeed, the word 𝑤 = 𝐶𝐴𝑇𝐺𝐺𝐶, which is the concate-
ation of 2 trinucleotides from 𝑋, namely 𝐶𝐴𝑇 and 𝐺𝐺𝐶, admits a

second circular 𝑋-decomposition: that of its circular 1-shift 𝐴𝑇𝐺 ⋅𝐺𝐶𝐶.
n the other hand, the code 𝑋 is (⩾ 1)-circular since it contains
o two trinucleotides in the same conjugacy class and no periodic
rinucleotide.

Notions of maximality in a given set of codes are of general and
iological interest, and have been studied, for instance, for the trin-
cleotide codes that are circular. We pursue this study in directions
ointed at by the recent introduction of the notion of 𝑘-circularity of a
ode.

efinition 2.5. Let  be a family of trinucleotide codes. A trinu-
leotide code 𝑋 ∈  is maximum if every code in  has size at most |𝑋|.
trinucleotide code 𝑋 ∈  is maximal if it is inclusion-wise maximal,
eaning that no code in  of size larger than |𝑋| contains 𝑋. Similarly,
trinucleotide code 𝑋 ∈  is minimum if every code in  has size

t least |𝑋|. A trinucleotide code 𝑋 ∈  is minimal if it is inclusion-
ise minimal, meaning that no code in  of size smaller than |𝑋| is

ontained in 𝑋.

The notions formalised in Definition 2.5 always refer to a given
amily of codes , which will always be clear from the context. We see
lso that a maximum code is necessarily maximal, but a maximal code
eed not be maximum — and similarly a minimum code is necessarily
inimal but a minimal code need not be minimum.

xample 2.6. Suppose that  is the family composed of the three
ollowing codes:

𝐴𝐶𝐺}, {𝐴𝐶𝐺,𝐶𝐺𝐴}, {𝐴𝐺𝑇 ,𝐶𝐺𝐴,𝐺𝑇𝐺}.

hen, in , the code {𝐴𝐺𝑇 ,𝐶𝐺𝐴,𝐺𝑇𝐺} is maximum (and hence max-
mal), and it is minimal but not minimum, while the code {𝐴𝐶𝐺} is
inimum (and hence minimal). The code {𝐴𝐶𝐺,𝐶𝐺𝐴} is not minimal

and hence not minimum either), and it is maximal but not maximum.

We use graph theory to study the circularity of codes. To this end,
everal useful definitions and facts are gathered in the next section.

. Graphs associated to trinucleotide codes

A new graph approach for studying circular codes (see Defini-
ion 3.1) has been recently developed (Fimmel et al., 2016). As we work
nly with trinucleotide codes, we restrict all definitions and results to
ur case of study. The interested reader can consult the article cited for
he full results.

Let us define the graph2 associated to a code.

efinition 3.1. Let 𝑋 ⊆ 3 be a trinucleotide code. We define
graph (𝑋) = (𝑉 (𝑋), 𝐸(𝑋)) with set of vertices 𝑉 (𝑋) and set of

rcs 𝐸(𝑋) as follows:

• 𝑉 (𝑋) ∶=
⋃

𝑁1𝑁2𝑁3∈𝑋
{𝑁1, 𝑁3, 𝑁1𝑁2, 𝑁2𝑁3}; and

2 Since all the graphs we consider are directed graphs, we simply write
‘graph’’ instead of ‘‘digraph’’.
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Fig. 1. The graphs associated to the codes 𝑋4 = {𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐺𝑇𝐴}, 𝑋3 = 𝑋4 ∪ {𝑇𝐴𝐶}, 𝑋2 = 𝑋3 ∪ {𝐺𝐺𝑇 } and 𝑋1 = 𝑋2 ∪ {𝐴𝐶𝐴}. Illustrating also Theorem 3.2, we see that the
raph (𝑋4) has infinite directed girth (i.e. contains no directed cycle) and hence 𝑋4 is circular (which is the same as (⩾4)-circular); the graph (𝑋3) has directed girth 8 = 2 ⋅ (3+1)
nd hence 𝑋3 is 3-circular; the graph (𝑋2) has directed girth 6 = 2 ⋅ (2+1) and hence 𝑋2 is 2-circular; and the graph (𝑋1) has directed girth 4 = 2 ⋅ (1+1) and hence 𝑋1 is 1-circular.
l
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• 𝐸(𝑋) ∶=
{

𝑁1 → 𝑁2𝑁3 ∶ 𝑁1𝑁2𝑁3 ∈ 𝑋
}

∪
{

𝑁1𝑁2 →

𝑁3 ∶ 𝑁1𝑁2𝑁3 ∈ 𝑋
}

.

The graph (𝑋) is the graph associated to 𝑋.

Fig. 1 illustrates Definition 3.1.
The length of a directed cycle in a graph  is the number of arcs

of the cycle. We note that every arc of (𝑋) joins a nucleotide and a
dinucleotide; in particular the graph (𝑋) cannot contain a directed
cycle of odd length. Directed cycles in the graph associated to a code
play an important role, as witnessed by the following theorem (Fimmel
et al., 2020, Theorem 3.3), the statement of which we specify to the
case of trinucleotide codes.

Theorem 3.2. Let 𝑋 ⊆ 3 be a trinucleotide code and 𝑘 a non-negative
integer. The code 𝑋 is 𝑘-circular if and only if the minimum of the lengths
of the directed cycles in (𝑋) is 2(𝑘 + 1), that is (𝑋) contains a directed
cycle of length 2(𝑘 + 1) and no directed cycle of shorter length.

In view of Theorem 3.2, we are interested in the length of the short-
est directed cycles in the graph associated to a code: this parameter is
called the directed girth.

Definition 3.3. If  is a directed graph, then the directed girth of  is
defined to be infinite if  contains no directed cycle, and the smallest
number of arcs of  forming a directed cycle otherwise.

As pointed out above, if 𝑋 is a trinucleotide code then every arc
of (𝑋) joins a nucleotide and a dinucleotide. Since  contains exactly
3

four nucleotides, it follows that a cycle in (𝑋), if any, must have t
ength in {2, 4, 6, 8}. Therefore, Theorem 3.2 implies in particular that
here is no trinucleotide 𝑘-circular code for 𝑘 ≥ 4; in other words, a
rinucleotide (⩾ 4)-circular code must be circular. Further, (𝑋) has a
ycle of length 2 if and only if 𝑋 contains two trinucleotides in a same
onjugacy class, or one of the periodic trinucleotides. In this case, 𝑋 is
-circular (2(𝑘+1) = 2 implies that 𝑘 = 0). The class of all trinucleotide
⩾0)-circular codes is precisely the class of all trinucleotide codes.

On the other hand, there exist 3-circular trinucleotide codes. For
nstance the code

5 = {𝐴𝐺𝐶,𝐴𝑇𝑇 , 𝐶𝐴𝐴,𝐶𝑇𝐺,𝐺𝐶𝐶,𝐺𝐴𝑇 , 𝑇𝐶𝐴, 𝑇𝐺𝐺}

s not (⩾ 4)-circular since the sequence of 4 trinucleotides
𝐶𝐴𝐴𝐺𝐶𝐶𝑇𝐺𝐺𝐴𝑇 admits two circular 𝑋-decompositions, namely

𝐶𝐴 ⋅ 𝐴𝐺𝐶 ⋅ 𝐶𝑇𝐺 ⋅ 𝐺𝐴𝑇 and 𝐶𝐴𝐴 ⋅ 𝐺𝐶𝐶 ⋅ 𝑇𝐺𝐺 ⋅ 𝐴𝑇𝑇 ,

ut 𝑋 is (⩾ 3)-circular as one can check that no sequence of 3 trinu-
leotides admits two circular 𝑋-decompositions.

It follows that all non-empty trinucleotide codes over  can be
aturally partitioned into 5 classes using the following definition.

efinition 3.4. We define the circularity cir(𝑋) of a non-empty
rinucleotide code 𝑋 to be the largest integer 𝑘 ∈ {0, 1, 2, 3, 4} such
hat 𝑋 is (⩾𝑘)-circular.
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For instance, the circularity of the code 𝑋5 above is 3 (i.e. cir(𝑋5) =
), while that of a trinucleotide circular code would be 4.3 For sheer
onvenience (regarding the notion of minimality), we actually define
he circularity of the empty code to be 5, that is, cir(∅) = 5. In this

way, the empty code forms a special class on its own, and we can focus
on non-empty codes.

The notion of 𝑘-circularity of a code immediately makes interesting
the notions of minimality formally introduced in Definition 2.5. These
notions of minimality are not interesting for circular codes. Indeed,
if 𝑋 is circular, then any subset of 𝑋 is also circular. This is no
longer true for the circularity of a code. For instance, the trinucleotide
code {𝐴𝐴𝐶,𝐴𝐶𝐺,𝐺𝑇𝐴, 𝑇𝐴𝐶,𝐶𝐺𝑇 } is 2-circular, while the code ob-
tained by removing 𝐶𝐺𝑇 , that is {𝐴𝐴𝐶,𝐴𝐶𝐺,𝐺𝑇𝐴, 𝑇𝐴𝐶}, is a circular
code, and hence has circularity 4. This remark, coupled to the graph
representation, leads to an approach for determining the sequences that
prevents the reading frame retrieval. This aspect is developed in the
companion article (Michel and Sereni, 2022).

4. Development of algorithms to identify trinucleotide 𝒌-circular
odes

Due to explosive combinatorics, we have developed specific algo-
ithms for identifying trinucleotide 𝑘-circular codes. Algorithms pre-
ented in Sections 4.1 and 4.2 have been parallelised and imple-
ented using the C language. The algorithm in Section 4.3 has been

mplemented using Ocaml.

.1. Algorithms based on directed cycles in graphs

Theorem 3.2 represents a code as a (directed) graph and links the
ircularity of the code to the (directed) girth of the graph. Finding
he length of a smallest directed cycle in a directed graph  is not

as straightforward as in the undirected case, and the worst-case time
complexity is 𝑂(𝑛(𝑛 + 𝑒)), where 𝑛 is the number of vertices of  and 𝑒
the number of arcs (Itai and Rodeh, 1978). This follows from the fact
that for an arbitrary vertex 𝑣 of , the length of a shortest directed cycle
containing 𝑣 can be computed in time 𝑂(𝑛 + 𝑒) at worse.

As reported earlier, the graph (𝑋) built from a trinucleotide code 𝑋
on the genetic alphabet  must be bipartite — meaning that it contains
no cycle of odd length — and it has a bi-partition with a part containing
(at most) 4 vertices — those representing the four nucleotides in .
In particular, every directed cycle must contain at least one of these
four vertices. In addition, the number of arcs is linear in the number of
vertices, both being linear in the size of the code. It thus follows from
the preceding paragraph that the length of a shortest directed cycle
in (𝑋) can be computed in time 𝑂(𝑛).

Let us give more details about the actual implementation we used.
The graphs are built incrementally. We start from (𝑋), of which we
know the directed girth, and we check the effect, on the directed girth,
of the addition of a particular word to 𝑋. Adding this word would add
exactly two arcs, and thus we only need to check the possible directed
cycles containing at least one of these two arcs.

Taking advantage of these facts, we designed an algorithm based
on a parallelised stack. We fix an order on the trinucleotides of 3, and
each thread starts with a trinucleotide code of a small fixed size. The
generic step is to check whether the addition of the next word 𝑁1𝑁2𝑁3
to the current trinucleotide code 𝑋 creates a directed cycle of length
less than the directed girth of (𝑋), and if so then we want to know the
length of a shortest such cycle. Such a directed cycle must contain the
arc 𝑁1 → 𝑁2𝑁3 or the arc 𝑁1𝑁2 → 𝑁3, which we can clearly exploit
to reduce the number of cases to check. Fig. 2 illustrates the situation
described below.

3 We note here that we could have defined the circularity of a trinucleotide
ircular code to be infinite; however, since a trinucleotide code that is (⩾ 4)-

circular must actually be circular, we chose to rather use this boundary
of 4.
4

d

Specifically, we proceed by computing four distances between pairs
of nodes in (𝑋). We first compute the distances from 𝑁2𝑁3 to 𝑁1,
and also from 𝑁2𝑁3 to 𝑁1𝑁2. The former lets us know the length of
a shortest directed cycle containing 𝑁1 → 𝑁2𝑁3 and not 𝑁1𝑁2 → 𝑁3.

he latter will be useful to know the length of a shortest directed cycle
ontaining both new arcs.

We next compute the distances from 𝑁3 to 𝑁1𝑁2 and from 𝑁3
o 𝑁1, from which we can deduce the length of a shorter directed
ycle containing 𝑁1𝑁2 → 𝑁3 (and possibly 𝑁1 → 𝑁2𝑁3, thanks
o the distance from 𝑁2𝑁3 to 𝑁1𝑁2, which was computed before as
entioned in the previous paragraph).

This test allows us to know the effect of adding a word to 𝑋 without
ctually making its addition, which saves updating operations. The only
pdating operations are thus made when addition of the word on the
tack is possible, and when we backtrack. In this latter case, a positive
umber of words have to be removed from 𝑋, which means removing
he corresponding arcs from the graph (𝑋) and recalling the value of
he directed girth — which had been stored at the step of the thread
here that particular trinucleotide code had been considered.

Finally, we note that directed graphs are implemented using 𝑛 adja-
ency lists, where 𝑛 is the number of vertices and each adjacency list is
epresented by a linked list. When backtracking, words are removed in
he reverse order from which they had been added, and thus we only
ave to remove the last element of some of the linked lists to update
he graph. When adding a word to the code, we have to add an element
t the end of some of the linked lists.

.2. Algorithms based on adjacency matrices

To have an independent program checking the computer results
escribed in Section 4.1, we designed a straightforward approach using
atrices derived from (𝑋) for a code 𝑋. An adequate choice of the
atrix used allows for a smooth and elegant implementation.

Specifically, given a code 𝑋 and its associated graph (𝑋), we build
zero–one square matrix 𝑀𝑋 where the lines, and the columns, are

n bijection with the arcs of (𝑋). The entry 𝑀𝑋 (𝑖, 𝑗) is 1 if the arc
orresponding to 𝑗 starts at the vertex where the arc corresponding
o 𝑖 ends. This matrix 𝑀𝑋 can thus be seen as the adjacency matrix
f the line graph ̃(𝑋) of (𝑋), defined to have one vertex for each arc
f (𝑋), and an arc from a vertex 𝑢 to a vertex 𝑣 if the corresponding
rcs in (𝑋), in the same order, form a directed path of length 2. An
mportant observation is that the directed girth of (𝑋) is the same as
hat of its line graph ̃(𝑋).

There are then various options to deduce the sought directed girth
rom the matrix 𝑀𝑋 . An elementary way to check for the directed
irth is to sequentially compute increasing powers of 𝑀𝑋 : the directed
irth of (𝑋) is the least positive power of 𝑀𝑋 containing a non-zero
lement on the main diagonal. Indeed, for every positive integer 𝓁,
he entry 𝑀𝓁

𝑋 (𝑖, 𝑗) is exactly the number of directed walks in ̃(𝑋)
f length precisely 𝓁. A directed closed walk must contain a directed
ycle, and thus a directed closed walk of smallest length in (𝑋) is
ndeed a shortest directed cycle of (𝑋), where a directed closed walk
n a graph  without parallel arcs amounts to a sequence 𝑣1,… , 𝑣𝑠 of
non-necessarily distinct) vertices such that 𝑣𝑖−1 → 𝑣𝑖 is an arc in  for
ach 𝑖 ∈ {2,… , 𝑠}.

Alternatively, one can also proceed by computing the eigenvalues
f 𝑀𝑋 . Indeed, (𝑋) is acyclic if and only if all eigenvalues of 𝑀𝑥 are 0,
nd if that is not the case then the length of a shortest directed cycle
n (𝑋) is equal to twice the least integer 𝓁 such that the sum of the
-th power of the eigenvalues of 𝑀𝑋 is non-zero.

The interest of a matrix representation of the line graph is an
fficient and easy-to-implement way to add a new element to a code,
r to remove the latest element added to a code. Indeed, to add a new
ord to a trinucleotide code 𝑋, it suffices to add two lines and two

olumns to 𝑀𝑋 . To delete the latest element added to 𝑋, it suffices to

elete the last two lines and the last two columns of 𝑀𝑋 . The structure
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Fig. 2. When adding the word 𝑁1𝑁2𝑁3 to the trinucleotide code 𝑋, the associated graph is obtained from (𝑋) by adding the two arcs 𝑁1 → 𝑁2𝑁3 and 𝑁1𝑁2 → 𝑁3. An
rrow in the middle of a dotted zigzag path represents a shortest directed path in (𝑋) from the source vertex to the destination vertex, if any. A directed cycle containing the
rc 𝑁1 → 𝑁2𝑁3 must contain either a directed path from 𝑁2𝑁3 to 𝑁1 in (𝑋) (whence the computation of the distance from 𝑁2𝑁3 to 𝑁1 in (𝑋)), or it also contains the second

added arc 𝑁1𝑁2 → 𝑁3 and then also two directed paths from (𝑋): one from 𝑁2𝑁3 to 𝑁1𝑁2 and one from 𝑁3 to 𝑁1. It then remains to check for a directed cycle containing the
rc 𝑁1𝑁2 → 𝑁3 but not the arc 𝑁1 → 𝑁2𝑁3: such a directed cycle must contain a directed path from 𝑁3 to 𝑁1𝑁2 in (𝑋).
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f 𝑀𝑋 thus makes it particularly suited to a backtracking approach.
oncretely, for computing codes of a given size 𝑛, the algorithm creates
single matrix of size 2𝑛 × 2𝑛, but only consider the upper left part

f adequate size at each given time; that is, the algorithm only deals
ith the first 2𝓁 lines and the first 2𝓁 columns when considering a

ode of size 𝓁 during its execution. Thus ‘‘deleting’’ the last two rows
nd the last two columns is actually just a single integer subtraction,
s we simply decrease by 2 the integer bounding the number of rows
and columns) that the algorithm is allowed to consider. ‘‘Adding’’ two
ines and two columns to 𝑀𝑋 , where |𝑋| = 𝓁, means increasing the
oundary by 2, and updating the entries in these two lines and two
olumns.

With the elementary method using matrix powers, only integral
alues are used. On the other hand, the eigenvalues of the adjacency
atrices can be complex numbers. The computations are thus made
sing floating-point numbers, but the problem is numerically stable,
nd as a matter of fact we never encountered a single run where the
pproximation created a discrepancy with the outcome of the other
lgorithms. The computation of the eigenvalues is performed using the
ibrary lapack, which uses the library blas.

.3. Incremental algorithm

The strategy this time is to specify the algorithm from the structure
f graphs representing trinucleotide 𝑘-circular codes for some 𝑘 ∈
1, 2, 3}. Indeed, the graph (𝑋) associated to such a code 𝑋 must
ontain a directed cycle of length 2(𝑘+1). This implies that the code has
ize at least 𝑘 + 1. The starting point is then all possible trinucleotide
odes of size 𝑘+1 that give rise to a graph isomorphic to a directed cycle
f length 2(𝑘+1). All these possibilities give the number of trinucleotide
-circular codes of size exactly 𝑘 + 1, and are stored in a file. Once all
rinucleotide codes with circularity 𝑘 and size 𝑛 have been generated
nd saved, the codes of size 𝑛 + 1 are generated by trying, for each
aved code of size 𝑛, to add one extra trinucleotide to the code. The
ircularity of the new code is checked using the graph representation.
f the circularity is still 𝑘, then we have found a trinucleotide 𝑘-circular
ode of size 𝑛 + 1. Such a code is saved and the process goes on.

We note that such a procedure might generate several times the
ame trinucleotide code, and thus once all codes of a given size and
ircularity have been generated, one needs to suppress those generated
ore than once. Another drawback is the time spent accessing files,
hich becomes enormous. (It would be useful here to design a specific

ossless compression format, so as to minimise the time spent reading
he file.) This method was implemented and executed for all sizes
hen 𝑘 ∈ {2, 3} and most sizes (but not all) when 𝑘 = 1. It confirmed

he outputs obtained by the other methods described in Sections 4.1
5

nd 4.2. c
. Results

.1. A general formula to count the trinucleotide 0-circular codes according
o various partitions

We here establish a general formula to count the number of trin-
cleotide 0-circular codes according to different partitions of the trin-
cleotides: for example, the partition can be given by the conjugacy
lasses, the self-complementarity or the mirror relation.

The following statement is straightforward.

roposition 5.1. Let 𝐸 be a set of trinucleotides partitioned into 𝑡 classes
ach of size 3. For each positive integer 𝑛, the number 𝐹⩽1(𝑛, 𝑡) of subsets 𝐸′

f 𝐸 of size 𝑛 such that |𝐸′ ∩ 𝐶| ≤ 1 for each class 𝐶 is

⩽1(𝑛, 𝑡) =
(

𝑡
𝑛

)

⋅ 3𝑛. (5.1)

Proposition 5.1 directly gives the number 𝐹⩾2(𝑛, 𝑡) of subsets 𝐸′ of
ize 𝑛 such that |𝐸′ ∩ 𝐶| ≥ 2 for at least one class 𝐶, as indicated
elow. We however provide a second formula, which is combinatorially
quivalent but is more amenable to further generalisations to other
artition types (e.g. the mirror relation).

roposition 5.2. Let 𝐸 be a set of trinucleotides partitioned into 𝑡 classes
ach of size 3. For each positive integer 𝑛, the number 𝐹⩾2(𝑛, 𝑡) of subsets 𝐸′

f 𝐸 of size 𝑛 such that |𝐸′ ∩ 𝐶| ≥ 2 for at least one class 𝐶 is

⩾2(𝑛, 𝑡) =
(

3𝑡
𝑛

)

−
(

𝑡
𝑛

)

⋅ 3𝑛 (5.2)

=
min{𝑡,𝑛−1}

∑

𝑐=⌈𝑛∕3⌉

(

𝑡
𝑐

) 𝑐−1
∑

𝑝=0

(

𝑐
𝑝

)(

𝑐 − 𝑝
3𝑐 − 𝑛 − 2𝑝

)

⋅ 33𝑐−𝑛−𝑝. (5.3)

roof. The number of subsets of 𝐸 of size 𝑛 is
(3𝑡
𝑛

)

, and hence (5.2)
ollows from Proposition 5.1.

To establish (5.3), consider a subset 𝐸′ of 𝐸 of size 𝑛. Let 𝑐 be
he number of classes 𝐶 intersected by 𝐸′. For each 𝑖 ∈ {1, 2, 3},
et 𝑝𝑖 be the number of classes 𝐶 such that |𝐸′ ∩ 𝐶| = 𝑖. It follows
hat 𝑝1+𝑝2+𝑝3 = 𝑐 and 𝑝1+2𝑝2+3𝑝3 = 𝑛. In particular, 𝑝2 = 3𝑐−𝑛−2𝑝1
nd 𝑝3 = 𝑐 − 𝑝1 − 𝑝2 = 𝑛 + 𝑝1 − 2𝑐.

The number of possibilities for 𝐸′ can thus be written
𝑡

∑

𝑐=1

(

𝑡
𝑐

) 𝑐
∑

𝑝1=0

(

𝑐
𝑝1

)(

𝑐 − 𝑝1
3𝑐 − 𝑛 − 2𝑝1

)

⋅ 33𝑐−𝑛−𝑝1 . (5.4)

The subset 𝐸′ satisfies |𝐸′ ∩ 𝐶| ≥ 2 for at least one class 𝐶 if and
nly if 𝑝1 < 𝑐. In addition, the range of 𝑐 can be reduced: indeed, 𝑐

annot be less than ⌈𝑛∕3⌉ or greater than 𝑛 − 1 (coherently, in such
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cases the rightmost binomial coefficient in (5.4) is 0). We thus deduce
that

𝐹⩾2(𝑛) =
min{𝑡,𝑛−1}

∑

𝑐=⌈𝑛∕3⌉

(

𝑡
𝑐

) 𝑐−1
∑

𝑝=0

(

𝑐
𝑝

)(

𝑐 − 𝑝
3𝑐 − 𝑛 − 2𝑝

)

⋅ 33𝑐−𝑛−𝑝, (5.5)

which concludes the proof.

Propositions 5.1 and 5.2 will be applied to the general case in
Section 5.2, and to the self-complementary case in Section 5.5.

5.2. Growth function of the circularity of trinucleotide codes

As reported earlier, the circularity of a trinucleotide code is be-
tween 0 and 4, and every code is (⩾ 0)-circular, that is, has circularity
at least 0. The next observation follows directly by definition.

Observation 5.3. The number 𝑁⩾0(𝑛) of trinucleotide (⩾ 0)-circular
codes 𝑋 with size 𝑛, for 𝑛 ∈ {1,… , 64}, is

𝑁⩾0(𝑛) =
(

64
𝑛

)

.

As pointed out in Remark 2.3, a trinucleotide code is (⩾1)-circular
if and only if it contains no periodic trinucleotide and at most one
trinucleotide from each conjugacy class. Proposition 5.1 applied to the
partition of 𝐸 = 3 ⧵  into the 𝑡 = 20 conjugacy classes yields the
following observation.

Observation 5.4. The number 𝑁⩾1(𝑛) of trinucleotide (⩾ 1)-circular
codes 𝑋 with size 𝑛, for 𝑛 ∈ {1,… , 20}, i.e. cir(𝑋) ∈ {1, 2, 3, 4}, is

𝑁⩾1(𝑛) = 𝐹⩽1(𝑛, 20) =
(

20
𝑛

)

⋅ 3𝑛.

The number 𝑁0(𝑛) of trinucleotide 0-circular codes of size 𝑛 ∈
{1,… , 20} can be expressed in various ways.

Proposition 5.5. The number 𝑁0(𝑛) of trinucleotide 0-circular codes of
size 𝑛 ∈ {1,… , 20} is precisely

𝑁0(𝑛) =
(

64
𝑛

)

−
(

20
𝑛

)

⋅ 3𝑛 (5.6)

=
(

60
𝑛 − 4

)

+ 4
(

60
𝑛 − 3

)

+ 6
(

60
𝑛 − 2

)

+ 4
(

60
𝑛 − 1

)

+
(

60
𝑛

)

−
(

20
𝑛

)

⋅ 3𝑛 (5.7)

=
(

60
𝑛 − 4

)

+ 4
(

60
𝑛 − 3

)

+ 6
(

60
𝑛 − 2

)

+ 4
(

60
𝑛 − 1

)

+
min{20,𝑛−1}

∑

𝑐=⌈𝑛∕3⌉

(

20
𝑐

) 𝑐−1
∑

𝑝=0

(

𝑐
𝑝

)(

𝑐 − 𝑝
3𝑐 − 𝑛 − 2𝑝

)

⋅ 33𝑐−𝑛−𝑝. (5.8)

Proof. Proof of (5.6). We have 𝑁0(𝑛) = 𝑁⩾0(𝑛)−𝑁⩾1(𝑛), and hence (5.6)
follows from Observations 5.3 and 5.4.
Proof of (5.7). A trinucleotide 0-circular code must contain a trinu-
cleotide in  , or two trinucleotides belonging to the same conjugation
class (two trinucleotides that are circular shifts of one another). Thus,
Proposition 5.1 applied to 𝐸 = 3 ⧵  with 𝑡 = 20 implies that the
number of trinucleotide 0-circular codes of size 𝑛 that do not contain
a periodic trinucleotide is

(60
𝑛

)

− 𝐹⩽1(𝑛, 20). On the other hand, every
trinucleotide code (of size 𝑛) containing (at least) one of the four
periodic trinucleotides is necessarily 0-circular. Consequently, their
number 𝑃 (𝑛) is

( 60
𝑛−4

)

+ 4
( 60
𝑛−3

)

+ 6
( 60
𝑛−2

)

+ 4
( 60
𝑛−1

)

and hence (5.7) follows.
Proof of (5.8). This follows from (5.3) of Proposition 5.2 applied to 𝐸 =
3 ⧵  with 𝑡 = 20 and the expression for 𝑃 (𝑛) written in the proof
6

of (5.7). s
We note that the size of a trinucleotide 0-circular code can be as
large as 64. The code of size 64 is precisely the genetic code, which
thus has circularity 0.

We present the number of all trinucleotide 𝑘-circular codes of any
given size in Table 1, where we only omitted the trinucleotide codes of
size larger than 20, which necessarily have circularity 0. The growth
f trinucleotide circular codes (4-circular) computed with our fast
lgorithms is identical to the one already obtained in Table 1 of Michel
nd Pirillo (2010).

Observations 5.3 and 5.4 and Proposition 5.5 permit a partial veri-
ication of the numbers in Table 1, obtained by computer calculus. The
otal number of trinucleotide codes on the line corresponding to |𝑋| = 𝑛
s 𝑁⩾0(𝑛), which is given by Observation 5.3. Next, the sum of the
ntries on this line and a column corresponding to cir(𝑋) ∈ {1, 2, 3, 4}
s 𝑁⩾1(𝑛), which is given by Observation 5.4. Last, the entry on the
ame line and the column corresponding to cir(𝑋) = 0 is equal to 𝑁0(𝑛),
hich is given by Proposition 5.5.

The notion of 𝑘-circularity allows for meaningful notions of mini-
ality. The first one deals with the smallest possible size of a trinu-

leotide 𝑘-circular code, as presented next.

.3. Sizes of minimum trinucleotide 𝑘-circular codes

While the minimum size of a trinucleotide code of circularity 0 or 4
s clearly 1, the situation is more complex when the circularity is 1, 2
r 3, as read from Tables 1 and 2.

bservation 5.6. The 6 minimum trinucleotide 1-circular codes of size 2,
ollow the structure {𝛼𝛽𝛼, 𝛽𝛼𝛽} for 𝛼 and 𝛽 two different nucleotides in .
here are precisely

(4
2

)

= 6 choices for the set {𝛼, 𝛽}. All these 6 codes are
ifferent but equivalent (in the sense that any of them is obtained from either
f them by a suitable permutation of the nucleotides), and in particular all
enerate the same graph: a directed cycle of length 4.

For the reader’s convenience, we now list the 6 minimum trinu-
leotide 1-circular codes and the 6 minimum trinucleotide 3-circular
odes.

ist 5.7 (The 6 Minimum Trinucleotide 1-Circular Codes of Size 2).

𝐴𝐶𝐴,𝐶𝐴𝐶}, {𝐴𝐺𝐴,𝐺𝐴𝐺}, {𝐴𝑇𝐴, 𝑇𝐴𝑇 },

𝐶𝐺𝐶,𝐺𝐶𝐺}, {𝐶𝑇𝐶, 𝑇𝐶𝑇 }, {𝐺𝑇𝐺, 𝑇𝐺𝑇 }.

ist 5.8 (The 6 Minimum Trinucleotide 3-Circular Codes of Size 4).

𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐺𝑇𝐴, 𝑇𝐴𝐶}, {𝐴𝐶𝑇 , 𝐶𝑇𝐺,𝐺𝐴𝐶, 𝑇𝐺𝐴},

𝐴𝐺𝐶,𝐶𝑇𝐴,𝐺𝐶𝑇 , 𝑇𝐴𝐺}, {𝐴𝐺𝑇 ,𝐶𝐴𝐺,𝐺𝑇𝐶, 𝑇𝐶𝐴},

𝐴𝑇𝐶, 𝐶𝐺𝐴,𝐺𝐴𝑇 , 𝑇𝐶𝐺}, {𝐴𝑇𝐺,𝐶𝐴𝑇 ,𝐺𝐶𝐴, 𝑇𝐺𝐶}.

.4. Growth function of minimal trinucleotide 𝑘-circular codes

We now turn to the notion of inclusion-wise minimality of a trinu-
leotide code with a given circularity.

efinition 5.9. For each 𝑘 ∈ {1, 2, 3}, a trinucleotide 𝑘-circular code 𝑋
s minimal if each code 𝑋′ strictly contained in 𝑋 is (⩾𝑘 + 1)-circular.

In other words, Definition 5.9 states that a trinucleotide 𝑘-circular
ode 𝑋 is minimal if and only if for each word 𝑤 ∈ 𝑋, the code 𝑋⧵{𝑤}
s (⩾𝑘 + 1)-circular.

Table 3 presents the number of trinucleotide 𝑘-circular codes that
re minimal in the sense of Definition 5.9, for all relevant values of 𝑘,
.e. 𝑘 ∈ {1, 2, 3}, and all possible code sizes. A striking fact occurs:
ne would have thought that for fixed 𝑘, the growth function seen
s a function of the code size 𝑛, would first increase with 𝑛 until a
ertain point, from which the function would be always 0. However,
rinucleotide 3-circular codes show that this is not the case, since there
re no minimal such codes of size 5, and yet there do exist minimal

uch codes of size 4 and of size 6.
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Table 1
Growth function of the trinucleotide 𝑘-circular codes 𝑋 with cardinality |𝑋| between 1 and 20 and circularity 𝑘 between 0 and 4.
|𝑋| cir(𝑋)

0 1 2 3 4 Total

1 4 0 0 0 60 64
2 306 6 0 0 1704 2016
3 10884 348 0 0 30432 41664
4 242931 10275 0 6 382164 635376
5 3857040 198084 984 192 3568212 7624512
6 46718328 2703072 42264 3192 25507512 74974368
7 451679952 27092916 766440 37104 141639780 621216192
8 3599676198 203850216 7772184 298668 614568102 4426165368
9 24234627832 1168509648 49134288 1570536 2086742208 27540584512
10 140563557772 5157137040 204575712 5298048 5542646244 151473214816
11 713842171704 17660170500 578824896 11553600 11503061124 743595781824
12 3217269080286 47179720798 1133758356 16476492 18615667124 3284214703056
13 13013266893264 98620253796 1552755192 15424416 23403485556 13136858812224
14 47670312080376 161186859852 1491008256 9375408 22700634924 47855699958816
15 159296534408592 204675268392 999089112 3573552 16787523072 159518999862720
16 488318375716335 198820855389 460696716 788820 9279022320 488526937079580
17 1379222955497700 143368816140 142169112 83520 3708717048 1379370175283520
18 3601615181125170 72569947818 27843072 2280 1012099740 3601688791018080
19 8719854880393380 23073397716 3104832 0 168726792 8719878125622720
20 19619722295866719 3473671209 148752 0 12964440 19619725782651120
Total 34032813813604773 977188463215 6651690168 64485834 115606988558 34033913325232548
t
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Table 2
Minimum size of a trinucleotide code with circularity 𝑘 between 0 and 4.

Circularity cir(𝑋) of 𝑋 0 1 2 3 4
Minimum size of 𝑋 1 2 5 4 1
Number of codes of minimum size 4 6 984 6 60

Table 3
Growth function of the minimal trinucleotide 𝑘-circular codes 𝑋 with cardinality |𝑋|

between 1 and 20 and circularity 𝑘 between 1 and 3.
|𝑋| cir(𝑋) Total

1 2 3

1 0 0 0 0
2 6 0 0 6
3 24 0 0 24
4 840 0 6 846
5 0 984 0 984
6 0 6600 636 7236
7 0 0 2976 2976
8 0 0 4248 4248
≥ 9 0 0 0 0
Total 870 7584 7866 16320

Example 5.10. The trinucleotide code {𝐴𝐶𝐺,𝐶𝐴𝐶,𝐺𝐶𝐴} is 1-circular
since it contains the directed cycle 𝐶 → 𝐴𝐶 → 𝐺 → 𝐶𝐴 → 𝐶 and no
horter directed cycle. Yet this code contains none of the trinucleotide
-circular of size less than 3 (see List 5.7), and therefore it is minimal.

.5. Growth function of self-complementary trinucleotide 𝑘-circular codes

The biological notion of complementarity leads to study families of
elf-complementary trinucleotide codes.

efinition 5.11. The complementary nucleotide 𝑁 of a nucleotide 𝑁 ∈
is given by 𝐴 ∶= 𝑇 , 𝑇 ∶= 𝐴, 𝐶 ∶= 𝐺 and 𝐺 ∶= 𝐶. A trinucleotide

code 𝑌 ⊆ 3 is self-complementary if for every trinucleotide 𝑁1𝑁2𝑁3
n 𝑌 , the complementary trinucleotide 𝑁1𝑁2𝑁3 ∶= 𝑁3 𝑁2 𝑁1 belongs
o 𝑌 , that is, if

= 𝑌 ∶=
{

𝑁3 𝑁2 𝑁1 ∶ 𝑁1𝑁2𝑁3 ∈ 𝑌
}

.

Remark 5.12. If 𝑤 ∈ 3 is a trinucleotide, then the complementary
rinucleotide of 𝑤 is 𝑤 itself — in other words, the complementary op-

eration is an involution. The trinucleotide code 𝑌 = {𝐴𝐶𝑇 ,𝐴𝐺𝑇 , 𝐶𝐶𝐺,
𝐶𝐺𝐺} is self-complementary, as 𝐴𝐶𝑇 = 𝐴𝐺𝑇 and 𝐶𝐶𝐺 = 𝐶𝐺𝐺.
7

Remark 5.13. Every self-complementary trinucleotide code has even
size, because no trinucleotide is its own complementary trinucleotide.
This property does not hold anymore for codes with words of even
length, e.g. dinucleotide codes and tetranucleotide codes.

The next observation follows directly by definition.

Observation 5.14. The number 𝑁 sc
⩾0(𝑚) of self-complementary trinu-

cleotide (⩾0)-circular codes 𝑌 with size 2𝑚, for 𝑚 ∈ {1,… , 32}, is

𝑁 sc
⩾0(𝑚) =

(

32
𝑚

)

.

A self-complementary trinucleotide code is (⩾1)-circular if and only
if it contains no periodic trinucleotide  and at most one trinucleotide
from each conjugacy class. The 60 trinucleotides not in  are parti-
tioned into 20 conjugacy classes of size 3. Note that the complementary
rinucleotide of a trinucleotide 𝑤 cannot be a circular shift of 𝑤.

Further, the circular shifts of 𝑤 are the complementary trinucleotides
of the circular shifts of 𝑤. More precisely, for 𝑗 ∈ {1, 2}, the circular
𝑗-shift of 𝑤 is the complementary trinucleotide of the (3 − 𝑗)-circular
hift of 𝑤. As a result, the set 𝒞 of the 20 conjugacy classes can be

partitioned into 2 subsets 𝒞1 and 𝒞2 of size 10, each subset being
ormed of the conjugacy classes of the complementary trinucleotides
f the trinucleotides in the other subset. This means that any self-
omplementary trinucleotide code that does not contain a periodic
rinucleotide is entirely determined by its intersections with the 10
onjugacy classes in 𝒞1. Thus, Proposition 5.1 with 𝑡 = 10 leads to the
ollowing statement.

bservation 5.15. The number 𝑁 sc
⩾1(𝑚) of self-complementary trinu-

leotide (⩾1)-circular codes 𝑌 with size 2𝑚, for 𝑚 ∈ {1,… , 10}, i.e. cir(𝑌 ) ∈
1, 2, 3, 4}, is

sc
⩾1(𝑚) = 𝐹⩽1(𝑚, 10) =

(

10
𝑚

)

⋅ 3𝑚.

The number 𝑁 sc
0 (𝑚) of self-complementary trinucleotide 0-circular

odes of size 2𝑚 ∈ {2,… , 20} can be expressed in various ways.

roposition 5.16. The number 𝑁 sc
0 (𝑚) of self-complementary trinu-

leotide 0-circular codes of size 2𝑚, where 𝑚 ∈ {1,… , 10}, is

sc
0 (𝑚) =

(

32
𝑚

)

−
(

10
𝑚

)

⋅ 3𝑚 (5.9)

=
(

30
)

+ 2
(

30
)

+
(

30
)

−
(

10
)

⋅ 3𝑚 (5.10)

𝑚 − 2 𝑚 − 1 𝑚 𝑚
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{

=
(

31
𝑚 − 1

)

+
(

30
𝑚 − 1

)

+
min{10,𝑚−1}

∑

𝑐=⌈𝑚∕3⌉

(

10
𝑐

) 𝑐−1
∑

𝑝=0

(

𝑐
𝑝

)(

𝑐 − 𝑝
3𝑐 − 𝑚 − 2𝑝

)

⋅ 33𝑐−𝑚−𝑝.

(5.11)

Proof. Proof of (5.9). We have 𝑁 sc
0 (𝑚) = 𝑁 sc

⩾0(𝑚) − 𝑁 sc
⩾1(𝑚), and

hence (5.9) follows from Observations 5.14 and 5.15.
Proof of (5.10). Proposition 5.1 applied to the conjugacy classes in 𝒞1
with 𝑡 = 10 implies that the number of self-complementary trinucleotide
0-circular codes of size 2𝑚 that do not contain a periodic trinucleotide
is

(30
𝑚

)

− 𝐹⩽1(𝑚, 10). In addition, the periodic trinucleotides contained
in a self-complementary trinucleotide code are completely determined
by its intersection with {𝐴𝐴𝐴,𝐶𝐶𝐶}. Self-complementary trinucleotide
codes containing a periodic trinucleotide (i.e. with a non-empty in-
tersection with the set  of periodic trinucleotides) are necessarily
0-circular, and hence their number 𝑃 sc(𝑚) is

( 30
𝑚−2

)

+2
( 30
𝑚−1

)

. Thus, (5.10)
follows.
Proof of (5.11). This follows from (5.3) in Proposition 5.2 applied to
the conjugacy classes in 𝒞1 with 𝑡 = 10 and the expression for 𝑃 sc(𝑚)
written in the proof of (5.10).

Some of the codes counted contain a whole conjugacy class. To
avoid counting such cases, one can proceed as follows. First, each
periodic trinucleotide in  forms its whole conjugacy class, so the
codes we count should not contain an element in  . Second, at least
one conjugacy class should contain exactly two trinucleotides from
the trinucleotide code, to ensure circularity 0. We thus conclude the
following.

Observation 5.17. For each 𝑚 ∈ {1,… , 10}, the number 𝑁̃ sc
0 (𝑚) of self-

complementary trinucleotide 0-circular codes of size 2𝑚 that do no contain
a whole conjugacy class is

𝑁̃ sc
0 (𝑚) =

⌊𝑚∕2⌋
∑

𝑑=1

(

10
𝑑

)(

10 − 𝑑
𝑚 − 2𝑑

)

⋅ 3𝑚−𝑑 .

Example 5.18. By (5.5) and Observation 5.17 applied with 𝑚 = 10,
we know that among the 64, 453, 191 self-complementary trinucleotide
0-circular codes of size 20, there are exactly 29, 985, 966 of them that
contain no periodic trinucleotide:

29, 985, 966 = 𝑁 sc
0 (10) − 𝑃 sc(10) = 64, 453, 191 − 34, 467, 225.

By Observation 5.17, the number of self-complementary trinucleotide
0-circular codes of size 20 that do not contain a whole conjugacy class
is

𝑁̃ sc
0 (10) = 21, 581, 316.

It follows that exactly 8, 404, 650 self-complementary trinucleotide 0-
circular codes of size 20 contain a whole conjugacy class but no periodic
trinucleotide:

8, 404, 650 = 29, 985, 966 − 𝑁̃ sc
0 (10) = 29, 985, 966 − 21, 581, 316.

Table 4 gives the growth function of the self-complementary trinu-
cleotide 𝑘-circular codes 𝑌 with even cardinality |𝑌 | between 2 and 20
and circularity 𝑘 between 0 and 4. The growth of self-complementary
trinucleotide circular codes (4-circular) computed with our fast algo-
rithms is identical to the one already obtained in Table 1 of Fimmel
et al. (2018).

Observations 5.14 and 5.15 and Proposition 5.16 permit a partial
verification of the numbers in Table 4, obtained by computer calculus.
The total number of trinucleotide codes on the line corresponding
to |𝑌 | = 2𝑚 is 𝑁 sc

⩾0(𝑚), which is given by Observation 5.14. Next, the
sum of the entries on this line and a column corresponding to cir(𝑌 ) ∈
{1, 2, 3, 4} is 𝑁 sc

⩾1(𝑚), which is given by Observation 5.15. Last, the entry
on the same line and the column corresponding to cir(𝑌 ) = 0 is equal
to 𝑁 sc(𝑚), which is given by Proposition 5.16.
8
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Table 4
Growth function of the self-complementary trinucleotide 𝑘-circular codes 𝑌 with even
cardinality |𝑌 | between 2 and 20 and circularity 𝑘 between 0 and 4.
|𝑌 | cir(𝑌 ) Total

0 1 2 3 4

2 2 2 0 0 28 32
4 91 67 0 4 334 496
6 1720 992 8 64 2176 4960
8 18950 8180 160 376 8294 35960
10 140140 40344 888 904 19100 201376
12 753102 123014 1844 968 27264 906192
14 3103416 235948 1704 464 24324 3365856
16 10223055 281145 780 80 13240 10518300
18 27851970 192622 176 0 4032 28048800
20 64453191 58505 16 0 528 64512240
Total 106545637 940819 5576 2860 99320 107594212

There are exactly 2 self-complementary trinucleotide 0-circular
odes of size 2, which are thus minimum (see List 5.19). The situation
s similar for self-complementary trinucleotide 1-circular codes (see
ist 5.20).

ist 5.19 (The 2 Minimum Self-Complementary Trinucleotide 0-Circular
odes of Size 2).

𝐴𝐴𝐴, 𝑇𝑇𝑇 }, {𝐶𝐶𝐶,𝐺𝐺𝐺}.

ist 5.20 (The 2 Minimum Self-Complementary Trinucleotide 1-Circular
odes of Size 2).

𝐴𝑇𝐴, 𝑇𝐴𝑇 }, {𝐶𝐺𝐶,𝐺𝐶𝐺}.

No self-complementary trinucleotide code of size less than 4 is
-circular and there are exactly 4 self-complementary trinucleotides
-circular codes of size 4, the list of which is found in List 5.21.

ist 5.21 (The 4 Minimum Self-Complementary Trinucleotide 3-Circular
odes of Size 4).

𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐺𝑇𝐴, 𝑇𝐴𝐶}, {𝐴𝐺𝐶,𝐺𝐶𝑇 , 𝐶𝑇𝐴, 𝑇𝐴𝐺},

𝐴𝑇𝐶,𝐺𝐴𝑇 , 𝐶𝐺𝐴, 𝑇𝐶𝐺}, {𝐴𝑇𝐺,𝐶𝐴𝑇 ,𝐺𝐶𝐴, 𝑇𝐺𝐶}.

No self-complementary trinucleotide code of size less than 6 is
-circular and there are exactly 8 self-complementary trinucleotides
-circular codes of size 6, the list of which is found in List 5.24.

bservation 5.22. The 8 minimum self-complementary trinucleotide
-circular codes of size 6, follow the structure

𝛼𝛼𝛽, 𝛽𝛼 𝛼, 𝛼𝛽𝛽, 𝛽𝛽𝛼, 𝛼𝛼𝛽, 𝛽𝛼𝛼}

for 𝛼 and 𝛽 two different and non-complementary nucleotides in . Fixing
for instance 𝛼 = 𝐴 and 𝛽 = 𝐶, each of the 8 permutations that preserves the
self-complementarity of the code can be applied, yielding all the 8 different
minimum self-complementarity trinucleotide 2-circular codes of size 6. More
precisely, these are the permutations swapping either (possibly both) pairs
of complementary nucleotides, the two possible permutations swapping 𝐴
with one of 𝐶,𝐺, and 𝑇 with the other one, the permutation (𝐴,𝐶, 𝑇 , 𝐺)
and its inverse for a total of seven codes in addition to the first one (see
List 5.23). Consequently, the graphs associated to these 8 codes are all
pairwise isomorphic: the unique graph obtained is depicted in Fig. 3.

List 5.23 (The 8 Permutations That Preserve the Self-Complementary Prop-
erty of Trinucleotide Codes).

(𝐴, 𝐶, 𝐺, 𝑇 ), (𝑇 , 𝐶, 𝐺, 𝐴),

(𝐴, 𝐺, 𝐶, 𝑇 ), (𝑇 , 𝐺, 𝐶, 𝐴),

(𝐶, 𝐴, 𝑇 , 𝐺), (𝐺, 𝑇 , 𝐴, 𝐶),
(𝐶, 𝑇 , 𝐴, 𝐺), (𝐺, 𝐴, 𝑇 , 𝐶).
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Fig. 3. The unique graph generated by the 8 minimum self-complementary trinu-
leotide 2-circular codes of size 6. The white vertices correspond to those associated
o nucleotides while the black vertices are those associated to dinucleotides.

Table 5
Growth function of the minimal self-complementary trinucleotide 𝑘-circular codes 𝑌

ith even cardinality |𝑌 | between 1 and 20 and circularity 𝑘 between 1 and 3.
|𝑌 | cir(𝑌 ) Total

1 2 3

2 2 0 0 2
4 14 0 4 18
6 64 8 8 80
8 117 56 56 229
10 0 64 0 64
≥12 0 0 0 0
Total 197 128 68 393

For the reader’s convenience, we explicitly list the 8 minimum
elf-complementary trinucleotide 2-circular codes of size 6.

ist 5.24 (The 8 Minimum Self-Complementary Trinucleotide 2-Circular
odes of Size 6).

𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐺𝑇𝐴, 𝑇𝐴𝐶}, {𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐺𝐶,𝐺𝐶𝑇 , 𝐶𝑇𝐴, 𝑇𝐴𝐺},

{𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐺𝑇𝐴, 𝑇𝐴𝐶}, {𝐴𝐺𝐶,𝐺𝐶𝑇 ,𝐴𝐺𝐺,𝐶𝐶𝑇 , 𝐶𝑇𝐴, 𝑇𝐴𝐺},

{𝐴𝑇𝐶,𝐺𝐴𝑇 , 𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐺𝐴𝐴, 𝑇 𝑇𝐶}, {𝐴𝑇𝐶,𝐺𝐴𝑇 , 𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐺𝐺𝐴, 𝑇𝐶𝐶},

{𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐴𝐴, 𝑇 𝑇𝐺,𝐺𝐶𝐴, 𝑇𝐺𝐶}, {𝐴𝑇𝐺,𝐶𝐴𝑇 , 𝐶𝐶𝐴, 𝑇𝐺𝐺,𝐺𝐶𝐴, 𝑇𝐺𝐶}.

5.6. Growth function of minimal self-complementary trinucleotide 𝑘-circular
codes

We now turn to the notion of inclusion-wise minimality of a self-
complementary trinucleotide code with a given circularity.

Definition 5.25. For each 𝑘 ∈ {1, 2, 3}, a self-complementary trinu-
cleotide 𝑘-circular code 𝑌 is minimal if each code 𝑌 ′ obtained from 𝑌
by removing both a trinucleotide and its complementary trinucleotide
is (⩾𝑘 + 1)-circular.

In other words, Definition 5.25 states that a self-complementary
trinucleotide 𝑘-circular code 𝑌 is minimal if and only if for each
word 𝑤 ∈ 𝑌 , the code 𝑌 ⧵ {𝑤,𝑤} is (⩾𝑘 + 1)-circular.

Table 5 presents the number of self-complementary trinucleotide 𝑘-
ircular codes that are minimal in the sense of Definition 5.25, for all
elevant values of 𝑘, i.e. 𝑘 ∈ {1, 2, 3}, and all possible code sizes.

xample 5.26. The trinucleotide code 𝑌1 ∶= {𝐴𝐶𝐴, 𝑇𝐺𝑇 , 𝐶𝐴𝐺,
𝑇𝐺,𝐺𝑇𝐴, 𝑇𝐴𝐶} is self-complementary and also 3-circular since it
ontains exactly two directed cycles, both of length 8. Their intersection
s

→ 𝐶𝐴 → 𝐺 → 𝑇𝐴 → 𝐶 → 𝑇𝐺 → 𝑇 .
9

c

his intersection contains an arc from every pair of complementary
rinucleotides of 𝑌1, which is enough to prove that 𝑌1 is one of the 8

minimal self-complementary trinucleotide 3-circular codes, the list of
which is found in List 5.27.

List 5.27 (The 8 Minimal Self-Complementary Trinucleotide 3-Circular
Codes of Size 6).

𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐴𝑇𝐺,𝐶𝐴𝑇 ,𝐺𝐴𝐶,𝐺𝑇𝐶}, {𝐴𝐶𝐴, 𝑇𝐺𝑇 , 𝐶𝐴𝐺,𝐶𝑇𝐺,𝐺𝑇𝐴, 𝑇𝐴𝐶},

𝐴𝐶𝐺,𝐶𝐺𝑇 , 𝐶𝐴𝐶,𝐺𝑇𝐺, 𝑇𝐶𝐴, 𝑇𝐺𝐴}, {𝐴𝐶𝑇 ,𝐴𝐺𝑇 , 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐺𝐶𝐴, 𝑇𝐺𝐶},

𝐴𝐶𝑇 ,𝐴𝐺𝑇 , 𝐶𝐺𝐴, 𝑇𝐶𝐺,𝐶𝑇𝐶,𝐺𝐴𝐺}, {𝐴𝐺𝐴, 𝑇𝐶𝑇 ,𝐴𝑇𝐶,𝐺𝐴𝑇 , 𝐶𝐴𝐺,𝐶𝑇𝐺},

𝐴𝐺𝐴, 𝑇𝐶𝑇 , 𝐶𝑇𝐴, 𝑇𝐴𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶}, {𝐴𝐺𝐶,𝐺𝐶𝑇 , 𝐶𝑇𝐶,𝐺𝐴𝐺, 𝑇𝐶𝐴, 𝑇𝐺𝐴}.

ist 5.28 (The 14 Minimal Self-Complementary Trinucleotide 1-Circular
odes of Size 4).

𝐴𝐴𝑇 ,𝐴𝑇𝑇 , 𝐶𝐺𝐴, 𝑇𝐶𝐺}, {𝐴𝐴𝑇 ,𝐴𝑇𝑇 ,𝐺𝐶𝐴, 𝑇𝐺𝐶}, {𝐴𝐶𝐴, 𝑇𝐺𝑇 , 𝐶𝐴𝐶,𝐺𝑇𝐺},

𝐴𝐶𝐺,𝐶𝐺𝑇 ,𝐺𝐶𝐴, 𝑇𝐺𝐶}, {𝐴𝐶𝐺,𝐶𝐺𝑇 , 𝑇𝐴𝐴, 𝑇 𝑇𝐴}, {𝐴𝐺𝐴, 𝑇𝐶𝑇 , 𝐶𝑇𝐶,𝐺𝐴𝐺},

𝐴𝐺𝐶,𝐺𝐶𝑇 , 𝐶𝐺𝐴, 𝑇𝐶𝐺}, {𝐴𝐺𝐶,𝐺𝐶𝑇 , 𝑇𝐴𝐴, 𝑇 𝑇𝐴}, {𝐴𝑇𝐶,𝐺𝐴𝑇 , 𝐶𝐶𝐺,𝐶𝐺𝐺},

𝐴𝑇𝐶,𝐺𝐴𝑇 , 𝐶𝑇𝐴, 𝑇𝐴𝐺}, {𝐴𝑇𝐺,𝐶𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶}, {𝐴𝑇𝐺,𝐶𝐴𝑇 ,𝐺𝑇𝐴, 𝑇𝐴𝐶},

𝐶𝐶𝐺,𝐶𝐺𝐺,𝐺𝑇𝐴, 𝑇𝐴𝐶}, {𝐶𝑇𝐴, 𝑇𝐴𝐺,𝐺𝐶𝐶,𝐺𝐺𝐶}.

.7. Growth function of trinucleotide (𝑘, 𝑘, 𝑘)-circular codes

Using the notion of circular shifts, a trinucleotide code naturally
ives rise to two other codes: the set of 𝑗-circular shifts of the trinu-
leotides in 𝑋 for 𝑗 ∈ {1, 2}.

efinition 5.29. If 𝑋 ⊆ 3 is a trinucleotide code, then for 𝑗 ∈ {1, 2}
e define 𝑋𝑗 to be the code composed of the 𝑗-circular shifts of all

rinucleotides in 𝑋, that is

1 ∶=
{

𝑁2𝑁3𝑁1 ∶ 𝑁1𝑁2𝑁3 ∈ 𝑋
}

, and

2 ∶=
{

𝑁3𝑁1𝑁2 ∶ 𝑁1𝑁2𝑁3 ∈ 𝑋
}

.

Given a trinucleotide code of circularity 𝑘, we are interested in the
ircularity of the two circular shifts of 𝑋, namely cir(𝑋1) and cir(𝑋2).

efinition 5.30. We define the shifted circularity of a trinucleotide
ode 𝑋 to be the triplet (cir(𝑋), cir(𝑋1), cir(𝑋2)), and we write that 𝑋
s (cir(𝑋), cir(𝑋1), cir(𝑋2))-circular.

xample 5.31. The 𝐶3 self-complementary trinucleotide code (𝑋) of
aximal size 20 identified in genes (Arquès and Michel, 1996) has

hifted circularity (4, 4, 4), since it is 𝐶3.

xample 5.32. Let 𝑋 be the trinucleotide code {𝐴𝑇𝐴,𝐺𝑇𝐴,
𝐴𝐶, 𝑇𝐴𝑇 }, which is 1-circular. Then 𝑋1 = {𝑇𝐴𝐴, 𝑇𝐴𝐺,𝐴𝐶𝑇 ,𝐴𝑇𝑇 }
nd 𝑋2 = {𝐴𝐴𝑇 ,𝐴𝐺𝑇 , 𝐶𝑇𝐴, 𝑇 𝑇𝐴}. We see that both 𝑋1 and 𝑋2 are
ircular, and hence the shifted circularity of 𝑋 is (1, 4, 4). Note that the
hifted circularity of 𝑋1 is (4, 4, 1) and that of 𝑋2 is (4, 1, 4).

Definition 5.30 broadly generalises the notion of 𝐶3 for a trinu-
leotide circular code. We are particularly interested in the generali-
ation formed by trinucleotide (𝑘, 𝑘, 𝑘)-circular codes for 𝑘 ∈ {1,… , 4}.

emark 5.33. A trinucleotide code 𝑋 is 0-circular if and only if it
ontains a trinucleotide 𝑤 and one of its circular shifts (which is 𝑤 itself
f 𝑤 is one of the periodic trinucleotides). It follows that if cir(𝑋) =
, then cir(𝑋1) = 0 = cir(𝑋2), and therefore every trinucleotide 0-
ircular code has shifted circularity (0, 0, 0). This fact of course does
ot generalise to larger values of cir(𝑋).

Table 6 gives the growth function of trinucleotide (𝑘, 𝑘, 𝑘)-circular
odes 𝑋 with cardinality |𝑋| between 1 and 20 and 𝑘 between 1 and 4.
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Table 6
Growth function of trinucleotide (𝑘, 𝑘, 𝑘)-circular codes 𝑋 with cardinality |𝑋|

between 1 and 20 and 𝑘 between 1 and 4.
|𝑋| Shifted circularity of 𝑋

(1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) Total

1 0 0 0 60 60
2 0 0 0 1692 1692
3 0 0 0 29736 29736
4 0 0 0 362340 362340
5 288 0 0 3208140 3208428
6 24624 72 0 20979360 21004056
7 819696 2184 0 101278980 102100860
8 15046488 32472 0 358986546 374065506
9 173052684 293688 0 934952112 1108298484
10 1321102596 1403784 96 1810992816 3133499292
11 6905470284 3193416 0 2659948812 9568612512
12 25274438019 3529416 0 3016531848 28294499283
13 66114692304 2117352 0 2671142076 68787951732
14 125886576816 800640 0 1851870852 127739248308
15 176584791216 224832 0 998646600 177583662648
16 182565809382 55620 0 411632826 182977497828
17 136685642724 12312 0 125522712 136811177748
18 70713412164 1944 0 26719056 70740133164
19 22760177964 144 0 3548208 22763726316
20 3449390967 0 0 221544 3449612511
Total 818450448216 11667876 96 14996576316 833458692504

The peculiarity of the case of trinucleotide (3, 3, 3)-circular codes
begs for study. It is much striking that such codes exist only for
size 10, as shown in Table 6. As it turns out, these 96 codes all have
a very particular structure. Although we do not have at the moment
a complete mathematical argument to establish that no other code is
(3, 3, 3)-circular, we are currently working on establishing this fact.

An analysis of these 96 codes shows that they can be divided into
four families of different codes: inside each family, any code is obtained
from any other code by a suitable permutation of the nucleotides. In
addition, inside each family no two nucleotides are ‘‘symmetric’’, in the
sense that all four nucleotides play different roles. Consequently, each
family has size 4! = 24. We may thus define each family by giving the
general shape of the codes it contains, as follows.

Observation 5.34. If 𝑋 is one of the 96 trinucleotide (3, 3, 3)-circular
codes of size 10, then there exists a bijection 𝜋 ∶ {𝛼, 𝛽, 𝛾, 𝛿} →  such
that 𝑋 = 𝜋(𝐹 ) where 𝐹 is one of the following four codes:

(1) {𝛼𝛼𝛽, 𝛼𝛽𝛾, 𝛼𝛾𝛿, 𝛽𝛿𝛽, 𝛽𝛿𝛾, 𝛾𝛼𝛾, 𝛾𝛽𝛽, 𝛾𝛾𝛿, 𝛿𝛼𝛼, 𝛿𝛽𝛼};
(2) {𝛼𝛼𝛽, 𝛼𝛽𝛿, 𝛼𝛾𝛾, 𝛽𝛼𝛾, 𝛽𝛽𝛿, 𝛽𝛾𝛽, 𝛾𝛿𝛽, 𝛾𝛿𝛾, 𝛿𝛼𝛼, 𝛿𝛾𝛼};
(3) {𝛼𝛼𝛽, 𝛼𝛾𝛽, 𝛽𝛿𝛼, 𝛽𝛿𝛿, 𝛾𝛼𝛿, 𝛾𝛽𝛾, 𝛾𝛾𝛼, 𝛿𝛼𝛼, 𝛿𝛽𝛾, 𝛿𝛾𝛿};
(4) {𝛼𝛼𝛽, 𝛼𝛿𝛽, 𝛽𝛾𝛼, 𝛽𝛾𝛾, 𝛾𝛼𝛾, 𝛾𝛽𝛿, 𝛾𝛿𝛼, 𝛿𝛼𝛼, 𝛿𝛽𝛿, 𝛿𝛿𝛾}.

Furthermore, the graph associated to any of these 96 codes is isomorphic to
one of the graph depicted in Fig. 4.

The last part of Observation 5.34 is interesting: it tells us that,
despite having non-equivalent codes among the 96 ones, they all share
the same associated graph. It thus seems that the graph is able to
capture intrinsic properties related to circularity while smoothing out
some of the differences irrelevant to that matter.

5.8. Growth function of self-complementary trinucleotide (𝑘, 𝑘, 𝑘)-circular
codes

Definition 5.35. A trinucleotide code 𝑌 is self-complementary (𝑘, 𝑘, 𝑘)-
circular if 𝑌 is both self-complementary and (𝑘, 𝑘, 𝑘)-circular.

We stress the important fact that, contrary to the general set-
ting, Definition 5.35 is not symmetric: indeed, neither the 1-circular
shift 𝑌1 nor the 2-circular shift 𝑌2 of a self-complementary code 𝑌
is self-complementary itself (unless 𝑌 ⊆ ). Indeed, 𝑌1 and 𝑌2 are
complementary of each other.
10
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Table 7
Growth function of self-complementary trinucleotide (𝑘, 𝑘, 𝑘)-circular codes 𝑌 with even
cardinality |𝑌 | between 2 and 20 and 𝑘 between 1 and 4.
|𝑌 | Shifted circularity of 𝑌

(1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) Total

2 0 0 0 28 28
4 0 0 0 330 330
6 68 0 0 2064 2132
8 1764 0 0 7102 8866
10 17408 96 0 13956 31460
12 80915 184 0 16764 97863
14 195388 56 0 12876 208320
16 259624 4 0 6252 265880
18 186296 0 0 1752 188048
20 57681 0 0 216 57897
Total 799144 340 0 61340 860824

Example 5.36. Let 𝑌 be the trinucleotide code {𝐴𝑇𝐶,𝐺𝐴𝑇 , 𝐶𝐶𝐺,
𝐶𝐺𝐺,𝐺𝐶𝐴, 𝑇𝐺𝐶}, which is self-complementary and 1-circular. First,
the 1-circular shift 𝑌1 of 𝑌 is the trinucleotide code {𝑇𝐶𝐴,𝐴𝑇𝐺,
𝐶𝐺𝐶,𝐺𝐺𝐶,𝐶𝐴𝐺,𝐺𝐶𝑇 }, which is also 1-circular but is not self-
complementary. Second, the 2-circular shift 𝑌2 of 𝑌 is {𝐶𝐴𝑇 , 𝑇𝐺𝐴,
𝐺𝐶𝐶,𝐺𝐶𝐺,𝐴𝐺𝐶,𝐶𝑇𝐺}, which is also 1-circular (and not self-
omplementary). Hence 𝑌 is a self-complementary trinucleotide
1, 1, 1)-circular code.

Table 7 gives the growth function of self-complementary trinu-
leotide (𝑘, 𝑘, 𝑘)-circular codes 𝑌 with even cardinality |𝑌 | between 2

and 20 and 𝑘 between 1 and 4.
As one sees in Table 7, there is no self-complementary trinucleotide

(3, 3, 3)-circular code. In addition, all self-complementary trinucleotides
(2, 2, 2)-circular codes have size at least 10 and at most 16. There are
exactly 4 self-complementary trinucleotides 2-circular codes of size 16
(see List 5.37).

List 5.37 (The 4 Maximum Self-Complementary Trinucleotide (2, 2, 2)-
ircular Codes of Size 16).

𝐴𝐴𝐶,𝐺𝑇𝑇 ,𝐴𝐴𝐺,𝐶𝑇𝑇 ,𝐴𝐴𝑇 ,𝐴𝑇𝑇 , 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐶𝐴𝐺,𝐶𝑇𝐺,

𝐶𝑇𝐶,𝐺𝐴𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴},

𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐴𝐶𝐶,𝐺𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,𝐴𝐺𝐴, 𝑇𝐶𝑇 , 𝐶𝐴𝐺,𝐶𝑇𝐺,

𝐺𝐶𝐶,𝐺𝐺𝐶,𝐺𝐺𝐴, 𝑇𝐶𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴},

𝐴𝐶𝐴, 𝑇𝐺𝑇 ,𝐴𝐶𝑇 ,𝐴𝐺𝑇 ,𝐴𝐺𝐴, 𝑇𝐶𝑇 ,𝐴𝐺𝐺,𝐶𝐶𝑇 , 𝐶𝐶𝐴, 𝑇𝐺𝐺,

𝐶𝐶𝐺,𝐶𝐺𝐺,𝐺𝐴𝐶,𝐺𝑇𝐶, 𝑇𝐶𝐴, 𝑇𝐺𝐴},

𝐴𝐶𝑇 ,𝐴𝐺𝑇 , 𝐶𝐴𝐴, 𝑇 𝑇𝐺, 𝐶𝐴𝐶,𝐺𝑇𝐺,𝐶𝐴𝐺,𝐶𝑇𝐺,𝐶𝑇𝐶,𝐺𝐴𝐺,

𝐺𝐴𝐴, 𝑇 𝑇𝐶,𝐺𝐴𝐶,𝐺𝑇𝐶, 𝑇𝐴𝐴, 𝑇 𝑇𝐴}.

. Conclusion

We developed three classes of algorithms to compute the trinu-
leotide 𝑘-circular codes based on: (i) the smallest directed cycles
directed girth) in graphs; (ii) the eigenvalues of matrices; and (iii)
he files that incrementally save partial results. They allowed us to
etermine quickly and safely the growth functions of the trinucleotide
-circular codes in the general case and in five important partic-
lar cases: minimum, minimal, self-complementary, (𝑘, 𝑘, 𝑘)-circular
nd self-complementary (𝑘, 𝑘, 𝑘)-circular. The general shape and the
raph structure of some codes are described, in particular for the
6 trinucleotide (3, 3, 3)-circular codes of size 10.

In all their generality, the algorithms developed here allow us
o study tetranucleotide codes (i.e. each word of the code is com-
osed of 4 nucleotides). We already obtained partial results with
he growth function of self-complementary tetranucleotide circular
odes, most notably, the maximum number and its size. There are
recisely 3, 089, 394, 792 maximum self-complementary tetranucleotide
ircular codes of size 60.
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Fig. 4. The two graphs generated by the 96 trinucleotide (3, 3, 3)-circular codes of size 10. The white vertices correspond to those associated to nucleotides while the black vertices
are those associated to dinucleotides.
Biological analyses inspired from this work are presented in the
companion article (Michel and Sereni, 2022).
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