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A B S T R A C T

A massive statistical analysis based on the autocorrelation function of the circular code 𝑋 observed in genes
is performed on the (eukaryotic) introns. Surprisingly, a circular code periodicity 0 modulo 3 is identified
in 5 groups of introns: birds, ascomycetes, basidiomycetes, green algae and land plants. This circular code
periodicity, which is a property of retrieving the reading frame in (protein coding) genes, may suggest that
these introns have a coding property. In a well-known way, a periodicity 1 modulo 2 is observed in 6 groups of
introns: amphibians, fishes, mammals, other animals, reptiles and apicomplexans. A mixed periodicity modulo
2 and 3 is found in the introns of insects. Astonishing, a subperiodicity 3 modulo 6 is a common statistical
property in these 3 classes of introns. When the particular trinucleotides 𝑁1𝑁2𝑁1 of the circular code 𝑋
are not considered, the circular code periodicity 0 modulo 3, hidden by the periodicity 1 modulo 2, is now
retrieved in 5 groups of introns: amphibians, fishes, other animals, reptiles and insects. Thus, 10 groups of
introns, taxonomically different, out of 12 have a coding property related to the reading frame retrieval. The
trinucleotides 𝑁1𝑁2𝑁1 are analysed in the 216 maximal 𝐶3 self-complementary trinucleotide circular codes.
A hexanucleotide code (words of 6 letters) is proposed to explain the periodicity 3 modulo 6. It could be a
trace of more general circular codes at the origin of the circular code 𝑋.
1. Introduction

Introns were discovered in 1977 (Berget et al., 1977; Chow et al.,
1977), which showed that the eukaryotic genes, in contrast to the
prokaryotic ones, contain insertion sequences that are removed from
pre-mRNAs shortly after transcription. Such insertion sequences were
named introns (‘‘INTRagenic regiONs’’), while protein coding gene
fragments separated by them were named exons (‘‘EXpressed regiONs’’)
(Gilbert, 1978). From an evolution point of view, the introns-early and
introns-late hypotheses have been debated for decades. The introns-
early hypothesis states that the protein coding sequences had already
contained introns at the primitive stages of evolution in order to
generate new proteins, via recombination for example. The introns-late
hypothesis states that the introns have emerged in eukaryotic genomes
only.

The periodicity modulo 3 (also called three-base periodicity TBP) is
defined as the preferential spacing of nucleotides and higher order 𝑘-
tuples, such as trinucleotides, by distances of 3, 6, 9, etc. nucleotides. It
is a well-known intrinsic property of (protein coding) genes observed in
the pioneer works (Shepherd, 1981a,b; Fickett, 1982; Michel, 1986; Ar-
quès and Michel, 1987a,b, 1990a,b). It is related to a biased distribution
of codons, a consequence from the degeneracy of the genetic code (most
amino acids are coded by more than one codon) and specific codon
usage bias in different organisms. One proposal is that the ancestral
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forms of present-day genes might have been coded by the comma-
free codes 𝑅𝑅𝑌 (Crick et al., 1976) and 𝑅𝑁𝑌 (Eigen and Schuster,
1978) (𝑅 = {𝐴,𝐺}, 𝑌 = {𝐶, 𝑇 }, 𝑁 being any nucleotide). To illustrate
the notion of periodicity modulo 3, for example with a 𝑅𝑅𝑌 code, a
sequence 𝑅𝑅𝑌 |𝑅𝑅𝑌 |𝑅𝑅𝑌 |... implies that any nucleotide 𝑌 is distant
from another nucleotide 𝑌 by a multiple of 3 nucleotides (3, 6, etc.),
and any trinucleotide 𝑅𝑅𝑌 is also distant from another trinucleotide
𝑅𝑅𝑌 by a multiple of 3 nucleotides (0, 3, 6, etc.), etc. In 1986, it was
shown that (eukaryotic) introns have no periodicity modulo 3 (Fig. 2
in Michel (1986)), and one year later a nucleotide periodicity modulo 2
is identified in the pioneer works (Arquès and Michel, 1987c; Konopka
and Smythers, 1987).

In real genetic sequences, the periodic signals modulo 2 and 3
are very noisy. Thus, sensitive statistical-signal analysis functions are
necessary to study them. In this paper, we apply the circular code
autocorrelation function to the introns. It is based on the maximal 𝐶3

self-complementary trinucleotide circular code 𝑋 that is in average
overrepresented in the reading frame of genes of bacteria, archaea,
eukaryotes, plasmids and viruses (Arquès and Michel, 1996; Michel,
2015, 2017) where

𝑋 = {𝐴𝐴𝐶,𝐴𝐴𝑇 ,𝐴𝐶𝐶,𝐴𝑇𝐶,𝐴𝑇𝑇 , 𝐶𝐴𝐺,𝐶𝑇𝐶, 𝐶𝑇𝐺,𝐺𝐴𝐴,𝐺𝐴𝐶,

𝐺𝐴𝐺,𝐺𝐴𝑇 ,𝐺𝐶𝐶,𝐺𝐺𝐶,𝐺𝐺𝑇 ,𝐺𝑇𝐴,𝐺𝑇𝐶,𝐺𝑇𝑇 , 𝑇𝐴𝐶, 𝑇 𝑇𝐶}.
(1.1)
vailable online 17 April 2024
303-2647/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.biosystems.2024.105215
Received 12 January 2024; Received in revised form 14 April 2024; Accepted 15 A
pril 2024

https://www.elsevier.com/locate/biosystems
https://www.elsevier.com/locate/biosystems
mailto:c.michel@unistra.fr
https://dpt-info.di.unistra.fr/~c.michel/
https://doi.org/10.1016/j.biosystems.2024.105215
https://doi.org/10.1016/j.biosystems.2024.105215


BioSystems 239 (2024) 105215C.J. Michel

p
𝑁
c
r
t
p
c
a
a
c
m

2

2

c
p
a

4
s
L
n
r
𝐴

𝐴

w

𝛿

R
a
p

R
m
a

a
{
t
a
a
o
f
n
n
v
𝑝
o

R
c
m

R
𝐴
t
b
(
i
f

o

E
o
e
𝑅
s
c

𝐴

A code is circular if any word written on a circle (the last nucleotide
becoming the first in the circle) has a unique decomposition into code-
words. A trinucleotide circular code allows to retrieve and maintain the
reading frame (property of synchronisation) by using an appropriate
window of nucleotides. In any sequence generated by a trinucleotide
circular code, the reading frame can be retrieved in a window length
of at most 13 consecutive nucleotides (4 trinucleotides plus one nu-
cleotide). The theoretical concepts of circular code are not necessary
to understand the methods and results obtained in this work. How-
ever, the reader wishing to go into more detail can refer to the two
reviews (Michel, 2008; Fimmel and Strüngmann, 2018) and to the
recent theoretical works (Fimmel et al., 2019, 2020; Michel et al., 2022;
Michel and Sereni, 2022, 2023; Fimmel et al., 2023a,b). The historical
context of the circular code result is described in Sections 4 and 5
in Michel (2020).

This article is organised as follows. The method Section 2 is divided
into four parts. Section 2.1 gives the definition of the autocorrelation
function of the circular code 𝑋(1.1) observed in genes that will be
applied to the study of introns. Section 2.2 recalls the circular code
periodicity 0 modulo 3 in genes. Section 2.3 presents a basic analysis
to evaluate the statistical significance of a circular code periodicity.
Section 2.4 describes the acquisition of introns from the GenBank
database (http://www.ncbi.nlm.nih.gov/genome/browse/, May 2023).
The results Section 3 are presented in six parts. A circular code period-
icity modulo 3 is identified in 5 subgroups of introns, like that observed
in genes, a result that has never been reported to our knowledge (Sec-
tion 3.1). A classical periodicity modulo 2 is retrieved in 6 subgroups
of introns (Section 3.2). A mixed periodicity modulo 2 and 3 is found
in the introns of insects and a striking subperiodicity modulo 6 can
exist in these 3 classes of introns (Section 3.3). A theoretical study
shows that the particular trinucleotides 𝑁1𝑁2𝑁1 of a circular code,
i.e. 𝐶𝑇𝐶 and 𝐺𝐴𝐺 in the circular code 𝑋(1.1), can be associated with a
eriodicity 1 modulo 2 (Section 3.4). When the particular trinucleotides
1𝑁2𝑁1 of the circular code 𝑋(1.1) are not considered, the circular

ode periodicity modulo 3, hidden by the periodicity modulo 2, is now
etrieved in 5 groups of introns: amphibians, fishes, other animals, rep-
iles and insects (Section 3.5). Section 3.6 shows that the circular code
eriodicity 0 modulo 3 also is also observed with the two permuted
ircular codes of 𝑋(1.1). Section 3.7 presents a few new properties
nd future research ideas on circular codes. The trinucleotides 𝑁1𝑁2𝑁1
re studied in the 216 maximal 𝐶3 self-complementary trinucleotide
ircular codes (Section 3.7.1). Hexanucleotide codes are proposed for
odelling the periodicity modulo 6 (Section 3.7.2).

. Method

.1. Circular code autocorrelation function

We recall here the autocorrelation function applied to the circular
ode (Michel and Thompson, 2020). This approach that gives exact
robabilities, to the nearest numerical approximations, is particularly
dapted to identify periodicities in noisy sequences, such as the introns.

An intron family 𝐹 consists of |𝐹 | introns (genetic sequences) on the
-nucleotide alphabet  ∶= {𝐴,𝐶,𝐺, 𝑇 } where 𝐴 stands for adenine, 𝐶
tands for cytosine, 𝐺 stands for guanine, and 𝑇 stands for thymine.
et the sequence 𝑠 = 𝑁1𝑁2 ⋯𝑁

|𝑠| be an intron of 𝐹 of length of |𝑠|
ucleotides, 𝑁𝑖 ∈  for 𝑖 ∈ {1,… , |𝑠|}. Let 𝑚 and 𝑚′ be 2 motifs of
espective lengths |𝑚| and |𝑚′

| on . Then, the correlation function
𝑚,𝑚′ (𝑖, 𝑠) in a sequence 𝑠 is defined by

𝑚,𝑚′ (𝑖, 𝑠) = 1
𝑙(𝑠)

𝑙(𝑠)
∑

𝑝=1
𝛿𝑚(𝑝) ⋅ 𝛿𝑚′ (𝑝+ |𝑚|+ 𝑖), 𝑖 = 0,… , 𝑛, 𝑛 ≪ 𝑙(𝑠), (2.1)

ith

𝑚(𝑝) =

{

1 if 𝑠[𝑝..𝑝 + |𝑚| − 1] = 𝑚
(2.2)
2

0 otherwise
Table 1
Autocorrelation function 𝐴𝑅,𝑅(𝑖, (𝑅𝑁𝑌 )+).

𝑖 𝑅 𝑁 𝑌 𝑅 𝑁 𝑌 Probability Total

0 𝑅 𝑅 1∕3 × 1 × 1∕2
𝑅 𝑅 1∕3 × 1∕2 × 0

𝑅 𝑅 1∕3 × 0 × 1 1∕6

1 𝑅 𝑅 1∕3 × 1 × 0
𝑅 𝑅 1∕3 × 1∕2 × 1

𝑅 𝑅 1∕3 × 0 × 1∕2 1∕6

2 𝑅 𝑅 1∕3 × 1 × 1
𝑅 𝑅 1∕3 × 1∕2 × 1∕2

𝑅 𝑅 1∕3 × 0 × 0 5∕12

and 𝑙(𝑠) = |𝑠| − (|𝑚 ⋅ 𝑚′
| + 𝑛) + 1 with the length |𝑚 ⋅ 𝑚′

| = |𝑚| + |𝑚′
|.

emark 2.1. 𝑠[𝑝..𝑝+ |𝑚|−1] = 𝑚 means that an occurrence of 𝑚 starts
t the left position 𝑝 on 𝑠, or briefly that the motif 𝑚 in 𝑠 is (occurs) in
osition 𝑝..𝑝 + |𝑚| − 1.

emark 2.2. When 𝑖 = 0, the motif 𝑚 in position 𝑝..𝑝+ |𝑚|−1 and the
otif 𝑚′ in position 𝑝+|𝑚|+𝑖..𝑝+|𝑚|+𝑖+|𝑚′

|−1, i.e. 𝑝+|𝑚|..𝑝+|𝑚 ⋅ 𝑚′
|−1,

re consecutive.

This definition of 𝐴𝑚,𝑚′ (𝑖, 𝑠) can also be understood as follows. Let
n 𝑖-motif 𝑚𝑁 𝑖𝑚′ (𝑚 ⋅𝑁 𝑖 ⋅ 𝑚′) be 2 motifs 𝑚 and 𝑚′ separated by 𝑖, 𝑖 ∈
0,… , 𝑛}, any nucleotides 𝑁 ∈ . Thus according to this convention,
he 0-motif is 𝑚𝑚′ (𝑚 and 𝑚′ are consecutive), the 1-motif is 𝑚𝑁𝑚′ (𝑚
nd 𝑚′ are separated by any 1 nucleotide 𝑁), the 2-motif is 𝑚𝑁𝑁𝑚′ (𝑚
nd 𝑚′ are separated by any 2 nucleotides 𝑁), etc. In order to count the
ccurrences of 𝑚𝑁 𝑖𝑚′ in a sequence 𝑠 of 𝐹 under the same conditions
or all 𝑖 ∈ {0,… , 𝑛}, i.e. without probability bias, only the 𝑙(𝑠) first
ucleotides of 𝑠 are analysed (a few 𝑖-motifs at the end of 𝑠 are thus
ot considered, since 𝑙(𝑠) is a function of the constant 𝑛 and not of the
ariable 𝑖). Indeed, when 𝑝 = 𝑙(𝑠) and 𝑖 = 𝑛, then the motif 𝑚′ in position
+ |𝑚|+ 𝑖 = |𝑠|− |𝑚′

|+ 1 has its last nucleotide 𝑙
|𝑚′

|

in the last position
f 𝑠.

emark 2.3. The definition of 𝐴𝑚,𝑚′ (𝑖, 𝑠) is a generalisation of the
lassical letter correlation function used in signal analysis when the
otifs 𝑚 and 𝑚′ are letters 𝑁 and 𝑁 ′, respectively.

emark 2.4. As a consequence of Eq. (2.1), the correlation function
𝑚,𝑚′ (𝑖, 𝑠) gives exact probabilities, to the nearest numerical approxima-

ions, that can be retrieved mathematically when the sequence 𝑠 has a
asic structure or a combination of basic structures, e.g. 𝑁 𝑗 , (𝑁1𝑁2)𝑗 ,
𝑁1𝑁2)𝑗 (𝑁1𝑁2𝑁3)𝑘, etc., where 𝑗 and 𝑘 are positive integers (detailed
n Appendix A in Michel and Thompson (2020)). However, only the
unction 𝐴𝑚,𝑚′ (𝑖, 𝑠) can compute real and noisy genetic sequences 𝑠.

For the convenience of the reader, we give a computation example
f the correlation function 𝐴𝑚,𝑚′ (𝑖, 𝑠) (Eq. (2.1)).

xample 2.5. For sake of simplicity, we compute 𝐴𝑚,𝑚′ (𝑖, 𝑠) (Eq. (2.1))
ver the 2-letter alphabet ′ ∶= {𝑅, 𝑌 } with 𝑁 = {𝑅, 𝑌 } (with
quiprobability) and the one-letter motifs 𝑚 and 𝑚′ such that 𝑚 = 𝑚′ =

(autocorrelation) on the sequence (𝑅𝑁𝑌 )+ = 𝑅𝑁𝑌𝑅𝑁𝑌 ... As the
equence is a concatenation of a same trinucleotide, three probability
ases must be considered (Table 1).

Thus, the autocorrelation function 𝐴𝑅,𝑅(𝑖, (𝑅𝑁𝑌 )+) is

𝑅,𝑅(𝑖, (𝑅𝑁𝑌 )+) =

⎧

⎪

⎪

⎨

⎪

⎪

1
6 for 𝑖 ≡ 0 (mod 3)
1
6 for 𝑖 ≡ 1 (mod 3)
5 for 𝑖 ≡ 2 (mod 3) .
⎩

12
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Fig. 1. (Fig. 2 in Michel and Thompson (2020)). Circular code periodicity 0 modulo 3 identified by the circular code autocorrelation function 𝐴𝑋,𝑋 (𝑖, 𝐹 ) (Eq. (2.4)) in bacterial
protein coding) genes (465,762 genes, 2,339,752,707 trinucleotides). The abscissa represents the number 𝑖 of nucleotides 𝑁 between 𝑋 and itself, 𝑖 varying from 0 to 𝑛 = 20. The

ordinate gives the occurrence probability 𝐴𝑋,𝑋 (𝑖, 𝐹 ) of 𝑋𝑁 𝑖𝑋 in bacterial genes.
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In order to study the correlation function of the circular code 𝑋(1.1)
based on 20 trinucleotides, we choose |𝑚| = |𝑚′

| = 3 and extend
Eq. (2.1) to a set of motifs. Let 3 = {𝐴𝐴𝐴,… , 𝑇 𝑇 𝑇 } be the set of the
64 trinucleotides with the following partition into 2 classes {𝑋,𝑋 ∶
𝑋 ∩ 𝑋 = ∅, 𝑋 ∪ 𝑋 = 3} with 𝑋 defined in (1.1). Then, the circular
ode autocorrelation function 𝐴𝑋,𝑋 (𝑖, 𝑠) in a sequence 𝑠 is defined by

𝐴𝑋,𝑋 (𝑖, 𝑠) =
∑

𝑚∈𝑋

∑

𝑚′∈𝑋
𝐴𝑚,𝑚′ (𝑖, 𝑠), 𝑖 = 0,… , 𝑛, (2.3)

with 𝐴𝑚,𝑚′ (𝑖, 𝑠) defined in Eq. (2.1). Eq. (2.3) easily extends to a se-
quence family. Thus, the circular code autocorrelation function
𝐴𝑚,𝑚′ (𝑖, 𝐹 ) in a family 𝐹 is defined by

𝐴𝑋,𝑋 (𝑖, 𝐹 ) = 1
|𝐹 |

∑

𝑠∈𝐹
𝐴𝑋,𝑋 (𝑖, 𝑠), 𝑖 = 0,… , 𝑛, (2.4)

with 𝐴𝑋,𝑋 (𝑖, 𝑠) defined in Eq. (2.3).
The function 𝑖 ⟶ 𝐴𝑋,𝑋 (𝑖, 𝐹 ) giving the occurrence probability that

the circular code 𝑋 appears any 𝑖 nucleotides 𝑁 after 𝑋 in the family 𝐹 ,
is called the circular code autocorrelation function 𝑋𝑁 𝑖𝑋 (associated

ith the 𝑖-motif 𝑋𝑁 𝑖𝑋 based on the circular code 𝑋). It is represented
y a curve with:

- on the abscissa, the number 𝑖 of nucleotides 𝑁 between 𝑋 and
tself, 𝑖 varying from 0 to 𝑛, which is chosen to be 𝑛 = 20 in the
escribed results.

- on the ordinate, the occurrence probability 𝐴𝑋,𝑋 (𝑖, 𝐹 ) of 𝑋𝑁 𝑖𝑋 in
.

emark 2.6. ∑

𝑆∈{𝑋,𝑋}
∑

𝑆′∈{𝑋,𝑋} 𝐴𝑆,𝑆′ (𝑖, 𝐹 ) = 𝐴𝑋,𝑋 (𝑖, 𝐹 )+𝐴𝑋,𝑋 (𝑖, 𝐹 )+
𝐴𝑋,𝑋 (𝑖, 𝐹 ) + 𝐴𝑋,𝑋 (𝑖, 𝐹 ) = 𝐴3 ,3 (𝑖, 𝐹 ) = 1 for all 𝑖, 𝑖 ∈ {0,… , 𝑛}, in 𝐹 .

he curve 𝐴3 ,3 (𝑖, 𝐹 ) is a horizontal line of value 1.

emark 2.7. 𝐴𝑋,𝑋 (𝑖, 𝐹 ) = 20⋅20
64⋅64 = 25

256 ≈ 0.0977 for all 𝑖, 𝑖 ∈ {0,… , 𝑛},
in a random family 𝐹 , and in particular in a random sequence 𝑠. Note
that 𝑠 is a particular case where |𝐹 | = 1. Thus, in the random case, the
curve 𝐴𝑋,𝑋 (𝑖, 𝐹 ) is a horizontal line of value 0.0977.

Remark 2.7 is particularly interesting as any correlation curve with-
out horizontal line of value 0.0977 can be associated with a non-
random family 𝐹 or a non-random sequence 𝑠.
3

2.2. Circular code periodicity 0 modulo 3 in protein coding genes

The observation of a periodicity modulo 3 in (protein coding)
genes of eukaryotes, bacteria, viruses, chloroplasts and mitochondria is
classical and has been described in the past by several authors and by
different statistical and signal methods, in particular at the sequence
level by Shepherd (Shepherd, 1981a,b) and at the population level
by Fickett (1982), Michel (Fig. 1 in Michel (1986)), and Arquès and
Michel (Arquès and Michel, 1987a,b, 1990a,b). This periodicity modulo
3 in genes has mainly been assigned to the properties of the codon
length of 3 nucleotides and the degeneracy of the genetic code.

In this line of research, a circular code periodicity 0 modulo 3 has
recently been identified by applying the circular code autocorrelation
function (Eq. (2.4)) to bacterial genes (465,762 genes, 2,339,752,707
trinucleotides). Fig. 1, which is a reminder of Fig. 2 in Michel and
Thompson (2020), has higher values for multiples (3𝑖) than for multi-
ples of (3𝑖+1) or (3𝑖+2) where 𝑖 ∈ {0, 1,… , ⌈ 𝑛

3 ⌉}. Note that the values in
Fig. 1 are around 0.1, as expected by Remark 2.7. Thus, a circular code
periodicity modulo 3 in genes has been assigned to the frame retrieval
of genes.

2.3. A basic analysis to evaluate the statistical significance of a circular
code periodicity

The probability that 𝐴𝑋,𝑋 (0, 𝐹 ) > 𝐴𝑋,𝑋 (1, 𝐹 ) is equal to 1
2

. The prob-
ability that 𝐴𝑋,𝑋 (𝑖, 𝐹 ) > 𝐴𝑋,𝑋 (𝑖 − 1, 𝐹 ) and 𝐴𝑋,𝑋 (𝑖, 𝐹 ) > 𝐴𝑋,𝑋 (𝑖 + 1, 𝐹 )

ith 𝑖 ≡ 0 (mod 3) and 𝑖 > 0 is equal to 1
3

. By assuming independence
between the events, the probability of a periodicity 0 modulo 3 until

𝑖 = 𝑛 is equal to 𝑝 = 1
2
⋅
( 1
3

)
⌊

𝑛−1
3 ⌋

. For example, when 𝑛 = 20 then

𝑝 = 1
2
⋅
( 1
3

)6
≈ 7 × 10−4, a strong statistical significance observed in

ig. 1.

.4. Data

Eukaryotic introns groups were obtained from the GenBank database
http://www.ncbi.nlm.nih.gov/genome/browse/, May 2023) Introns
ith nucleotides different from  as well as less than 500 nucleotides
are excluded from this statistical analysis. Groups of introns with less

http://www.ncbi.nlm.nih.gov/genome/browse/
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Table 2
Groups and subgroups 𝐹 of introns extracted from the GenBank database (http://www.ncbi.nlm.nih.gov/genome/browse/,
May 2023) with their symbol and their total numbers of chromosomes, introns and nucleotides.

Group Subgroup Total number

Chromosomes Introns Nucleotides

Animals A Amphibians AA 116 1,739,367 3,483,784,343
Birds AB 1,272 7,239,100 11,573,631,130
Fishes AF 2,986 21,559,237 35,662,962,674
Insects AI 1,453 4,553,961 7,284,977,520
Mammals AM 2,056 22,532,010 42,974,235,162
Other Animals AOA 526 3,123,784 4,844,433,483
Reptiles AR 380 4,595,378 8,321,053,066

Fungi F Ascomycetes FA 846 12,595 13,751,462
Basidiomycetes FB 238 3,631 4,142,508

Plants Pl Green Algae PGA 133 1,319 1,982,139
Land Plants PLP 2,147 1,817,549 3,349,278,680

Protists Pr Apicomplexans PA 263 40,880 28,972,306
𝑖
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than 100 chromosomes (identifier NC) are excluded. Table 2 gives some
basic information about the studied groups of introns.

3. Results

A statistical analysis of introns is carried out on a very large scale,
including 4 groups: animals A, fungi F, plants Pl and protists Pr
according to the taxonomy of the GenBank database (Table 2). The
animals group analysed is divided into 7 subgroups: amphibians AA,
birds AB, fishes AF, insects AI, mammals AM, other animals AOA and
reptiles AR. The fungi group has 2 subgroups: ascomycetes FA and
basidiomycetes FB. The plants group contains 2 subgroups: green algae
PGA and land plants PLP. The protists groups is represented by the
subgroup apicomplexans PA.

By applying the circular code autocorrelation function 𝐴𝑋,𝑋 (𝑖, 𝐹 )
(Eq. (2.4)), these 12 subgroups of introns can be classified into 3 classes
according to their identified periodicities.

Remark 3.1. For simplicity of writing in the following, a periodicity
0 modulo 3 is briefly named by modulo 3, and a periodicity 1 modulo
2, by modulo 2.

3.1. Circular code periodicity 0 modulo 3 in introns

Very surprisingly, 5 subgroups of introns have a circular code
periodicity 0 modulo 3, as in the (protein coding) genes (Fig. 2): birds
AB, ascomycetes FA, basidiomycetes FB, green algae PGA and land
plants PLP. Therefore, the (complete) groups of fungi and plants have
a circular code periodicity. In a strange way, 1 subgroup of animals,
the birds, has also a circular code periodicity. Note that the value
𝐴𝑋,𝑋 (0, 𝐹 ) at 𝑖 = 0 is very low, compared to the remaining values, in
𝐹 = 𝐀𝐁 (flattened periodicity in Fig. 2(A)) and 𝐹 = 𝐏𝐋𝐏. The circular
code periodicity in introns is less regular than in genes (compare Figs. 1
and 2).

3.2. Periodicity 1 modulo 2 in introns

As is the norm (Michel, 1986; Arquès and Michel, 1987c; Konopka
and Smythers, 1987), 6 subgroups of introns have a periodicity 1
modulo 2 (Fig. 3): amphibians AA, fishes AF, mammals AM, other
animals AOA, reptiles AR and apicomplexans PA. The group of animals,
except the birds with a periodicity modulo 3 (see Section 3.1) and
the insects with a mixed periodicity (see below Section 3.3), has a
periodicity modulo 2. Note that the value 𝐴𝑋,𝑋 (0, 𝐹 ) at 𝑖 = 0 is very
low, compared to the remaining values, in almost all subgroups, except
for 𝐹 = 𝐀𝐎𝐀 and 𝐹 = 𝐏𝐀. The periodicity modulo 2 is short in 𝐹 = 𝐀𝐀
and 𝐹 = 𝐀𝐑 as it disappears for 𝑖 ≥ 11.

Homo sapiens (24 chromosomes, 593,398 introns, 1,182,410,148
nucleotides) has a short periodicity 1 modulo 2 (Fig. 4) as it disappears
for 𝑖 ≥ 7.
4

3.3. Mixed periodicity in introns

The case of introns for the animals insects AI is strange and interest-
ing. Indeed, Fig. 5 shows that the periodicity 0 modulo 3 is incomplete
as there are no peaks at 𝑖 = 6, 12, 18. Analogously, the periodicity 1
modulo 2 is also incomplete as there are no peaks at 𝑖 = 1, 11, 19.
This observation may suggest that the introns of AI have a mixed
periodicity modulo 2 and 3. Furthermore, a subperiodicity 3 modulo 6
can be observed: peaks at 𝑖 = 3, 9, 15 in Fig. 5. Very surprisingly, by re-
examining the previous figures, a subperiodicity 3 modulo 6 also exists
in some introns with a complete circular code periodicity 0 modulo
3, precisely in fungi ascomycetes FA (peak at 𝑖 = 15 not significant),
plants green algae PGA and plants land plants PLP (Fig. 2(B)(D)(E),
respectively). Interestingly, the introns of fungi ascomycetes FA and
plants green algae PGA (Fig. 2(B)(D), respectively) have an additional
subperiodicity 0 modulo 6 with peaks at 𝑖 = 0, 6, 12, 18. It is also
astonishing to identify this subperiodicity 3 modulo 6 in the introns
with a complete periodicity 1 modulo 2 of animals fishes AF (peak at
= 15 not significant), mammals AM, other animals AOA and reptiles
R (peak at 𝑖 = 15 not significant), and of protists apicomplexans PA

peak at 𝑖 = 15 not significant) (Fig. 3(B)(C)(D)(E)(F)). Note that the
ubperiodicity 0 modulo 6 obviously cannot be present in introns with
complete periodicity 1 modulo 2.

.4. Trinucleotide circular code associated with a periodicity modulo 2

The observation that a trinucleotide circular code, such that 𝑋(1.1),
can be associated with a periodicity 1 modulo 2, is not obvious and
needs some investigation. A periodicity modulo 2 is generated by the
sequence (𝑁1𝑁2)+ = 𝑁1𝑁2𝑁1𝑁2..., with 𝑁1, 𝑁2 ∈  and 𝑁1 ≠ 𝑁2. The
ode {𝑁1𝑁2} is circular.

emark 3.2. If 𝑁1 = 𝑁2 then the sequence (𝑁1𝑁1)+ = 𝑁+
1 cannot

enerated a periodicity modulo 2.

The study of trinucleotides involving in a periodicity modulo 2 can
e carried out for a code in a general context. It is considered here for
code that is circular.

A first hypothesis is based on the fact that a sequence (𝑁1𝑁2)+ can
e constructed by a series of 2 trinucleotides: (𝑁1𝑁2)+ = (𝑁1𝑁2𝑁1 ⋅

2𝑁1𝑁2)+. However, a circular code cannot contain at the same time
he 2 trinucleotides 𝑁1𝑁2𝑁1 and 𝑁2𝑁1𝑁2 as some sequences have

(even 3) decompositions on a circle: 𝑁1𝑁2𝑁1 ⋅ 𝑁2𝑁1𝑁2 and 𝑁1 ⋅

2𝑁1𝑁2⋅𝑁1𝑁2. Thus, this hypothesis must be rejected, noting that such
complex process of constructing periodicities modulo 2 also seems

ardly appropriate for a primitive stage of life.
A second hypothesis is to observe that a sequence (𝑁1𝑁2)+ contains

n unique trinucleotide 𝑁1𝑁2𝑁3 that overlaps at the 3rd codon site:
𝑁1𝑁2𝑁1𝑁2𝑁1𝑁2𝑁1𝑁2𝑁1 ⋯. Such ‘‘modulo 2’’ trinucleotides allowing
a reading by 2 nucleotides, only exist if 𝑁 = 𝑁 . The circular
1 3

http://www.ncbi.nlm.nih.gov/genome/browse/
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Fig. 2. Circular code periodicity 0 modulo 3 identified by the circular code auto-
correlation function 𝐴𝑋,𝑋 (𝑖, 𝐹 ) (Eq. (2.4)) in 5 subgroups of introns (Table 2). The
bscissa represents the number 𝑖 of nucleotides 𝑁 between 𝑋 and itself, 𝑖 varying

from 0 to 𝑛 = 20. The ordinate gives the occurrence probability 𝐴𝑋,𝑋 (𝑖, 𝐹 ) of 𝑋𝑁 𝑖𝑋 in
introns of: (A) Animals Birds AB (until 𝑖 < 17). (B) Fungi Ascomycetes FA. (C) Fungi
Basidiomycetes FB. (D) Plants Green Algae PGA. (E) Plants Land Plants PLP.
5

Fig. 3. Periodicity 1 modulo 2 identified by the circular code autocorrelation function
𝐴𝑋,𝑋 (𝑖, 𝐹 ) (Eq. (2.4)) in 6 subgroups of introns (Table 2). The abscissa represents the
umber 𝑖 of nucleotides 𝑁 between 𝑋 and itself, 𝑖 varying from 0 to 𝑛 = 20. The
rdinate gives the occurrence probability 𝐴𝑋,𝑋 (𝑖, 𝐹 ) of 𝑋𝑁 𝑖𝑋 in introns of: (A) Animals
mphibians AA (until 𝑖 < 11). (B) Animals Fishes AF. (C) Animals Mammals AM.

D) Animals Other Animals AOA. (E) Animals Reptiles AR (until 𝑖 < 11). (F) Protists
picomplexans PA.
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5

Fig. 4. Short periodicity 1 modulo 2 (until 𝑖 < 7) identified by the circular code auto-
correlation function 𝐴𝑋,𝑋 (𝑖, 𝐹 ) (Eq. (2.4)) in introns of Homo sapiens (24 chromosomes,
93,398 introns, 1,182,410,148 nucleotides). The abscissa represents the number 𝑖 of

nucleotides 𝑁 between 𝑋 and itself, 𝑖 varying from 0 to 𝑛 = 20. The ordinate gives the
occurrence probability 𝐴𝑋,𝑋 (𝑖, 𝐹 ) of 𝑋𝑁 𝑖𝑋 in introns of Homo sapiens.

Fig. 5. Mixed periodicity modulo 2 and 3 identified by the circular code autocorre-
lation function 𝐴𝑋,𝑋 (𝑖, 𝐹 ) (Eq. (2.4)) in introns of Animals Insects AI (Table 2). The
periodicity 0 modulo 3 is incomplete as there are no peaks at 𝑖 = 6, 12, 18. Analogously,
the periodicity 1 modulo 2 is also incomplete as there are no peaks at 𝑖 = 1, 11, 19. A
subperiodicity 3 modulo 6 can be observed: peaks at 𝑖 = 3, 9, 15. The abscissa represents
the number 𝑖 of nucleotides 𝑁 between 𝑋 and itself, 𝑖 varying from 0 to 𝑛 = 20. The
ordinate gives the occurrence probability 𝐴𝑋,𝑋 (𝑖, 𝐹 ) of 𝑋𝑁 𝑖𝑋 in introns of Animals
Insects AI.

code 𝑋 contains 2 such modulo 2 trinucleotides 𝑁1𝑁2𝑁1: 𝐶𝑇𝐶 and
𝐺𝐴𝐺(1.1). However, the construction of a sequence (𝑁1𝑁2)+ involv-
ing a trinucleotide 𝑁1𝑁2𝑁1 is an open problem that requires further
investigation. For example, if (𝑁1𝑁2)+ = (𝑁1𝑁2𝑁1 ⋅ 𝑁2)+ then the
tetranucleotide code {𝑁1𝑁2𝑁1𝑁2} or the mixed code {𝑁2, 𝑁1𝑁2𝑁1}
are both not circular. A hexanucleotide code could also be an area for
research (see below Section 3.7.2).

Remark 3.3. In a self-complementary code, in particular the circular
code 𝑋(1.1), trinucleotides 𝑁1𝑁2𝑁1 always occur by complementary
pairs: 𝑁1𝑁2𝑁1 and (𝑁1)(𝑁2)(𝑁1) where  is the classical comple-
mentary map, e.g. 𝐶𝑇𝐶 and 𝐺𝐴𝐺 in 𝑋. Note that self-complementarity
 preserves the property 𝑁1 = 𝑁3.

3.5. Circular code periodicity 0 modulo 3 hidden by the periodicity 1
modulo 2 in introns

In order to test if the circular code periodicity 0 modulo 3 is hidden
by the periodicity 1 modulo 2 in introns of Animals Amphibians AA,
Animals Fishes AF, Animals Mammals AM, Animals Other Animals
AOA, Animals Reptiles AR, Protists Apicomplexans PA (see Section 3.2)
and by the mixed periodicity in introns of Animals Insects AI (see Sec-
tion 3.3), the series (𝐶𝑇 )+ and (𝐺𝐴)+, revealed by the 2 trinucleotides
𝐶𝑇𝐶 and 𝐺𝐴𝐺 of the circular code 𝑋 (involved in the circular code
autocorrelation function 𝐴𝑋,𝑋 (𝑖, 𝐹 ) (Eq. (2.4))), are replaced in these
introns by 𝐴+, a nucleotide series that cannot be associated with a
6

circular code (a periodic trinucleotide, such as 𝐴𝐴𝐴, cannot be a word
of a circular code).

Very interestingly, when the series (𝐶𝑇 )+ and (𝐺𝐴)+ are not con-
sidered in the introns with a periodicity 1 modulo 2, the circular code
periodicity 0 modulo 3 is now retrieved in 5 groups of introns (Fig. 6):
amphibians AA, fishes AF, other animals AOA, reptiles AR and insects
AI. This approach has failed to retrieve the circular code periodicity 0
modulo 3 in introns of mammals AM and apicomplexans PA and needs
investigation in the future.

3.6. Circular code periodicity 0 modulo 3 with the two permuted circular
codes of 𝑋

The maximal 𝐶3 self-complementary trinucleotide circular code
𝑋(1.1) has 2 permuted circular codes 𝑋1 (shifted by 1 nucleotide in
the 5′ − 3′ direction, i.e. to the right) and 𝑋2 (shifted by 2 nucleotides
in the 5′ − 3′ direction) (Arquès and Michel, 1996) where

𝑋1 = {𝐴𝐴𝐺,𝐴𝐶𝐴,𝐴𝐶𝐺,𝐴𝐶𝑇 ,𝐴𝐺𝐶,𝐴𝐺𝐺,𝐴𝑇𝐴,𝐴𝑇𝐺,𝐶𝐶𝐴,𝐶𝐶𝐺,

𝐺𝐶𝐺,𝐺𝑇𝐺, 𝑇𝐴𝐺, 𝑇𝐶𝐴, 𝑇𝐶𝐶, 𝑇𝐶𝐺, 𝑇𝐶𝑇 , 𝑇𝐺𝐶, 𝑇 𝑇𝐴, 𝑇 𝑇𝐺}

(3.1)

and

𝑋2 = {𝐴𝐺𝐴,𝐴𝐺𝑇 , 𝐶𝐴𝐴,𝐶𝐴𝐶,𝐶𝐴𝑇 , 𝐶𝐶𝑇 , 𝐶𝐺𝐴,𝐶𝐺𝐶,𝐶𝐺𝐺,𝐶𝐺𝑇 ,

𝐶𝑇𝐴, 𝐶𝑇𝑇 ,𝐺𝐶𝐴,𝐺𝐶𝑇 ,𝐺𝐺𝐴, 𝑇𝐴𝐴, 𝑇𝐴𝑇 , 𝑇𝐺𝐴, 𝑇𝐺𝐺, 𝑇𝐺𝑇 }.

(3.2)

We extend the statistical study by applying the circular code autocor-
relation functions 𝐴𝑋1 ,𝑋1

(𝑖, 𝐹 ) (Eq. (2.4) with 𝑋1 defined in (3.1)) and
𝐴𝑋2 ,𝑋2

(𝑖, 𝐹 ) (Eq. (2.4) with 𝑋2 defined in (3.2)) to the 2 subgroups of
introns Fungi Ascomycetes FA and Plants Green Algae PGA where the
circular code periodicity 0 modulo 3 is well observed (Fig. 2(B) and
2(D)).

The function 𝐴𝑋1 ,𝑋1
(𝑖, 𝐹 ) identifies a circular code periodicity 0

modulo 3 in introns of Fungi Ascomycetes FA (Fig. 7(A) as Fig. 2(B))
but surprisingly a periodicity 1 modulo 2 in introns of Plants Green
Algae PGA (Fig. 7(B) in contrast to Fig. 2(D)).

The same periodicity result is found with the function 𝐴𝑋2 ,𝑋2
(𝑖, 𝐹 )

(Figs. 8(A) and 8(B)). Note that the Figs. 7(B) and 8(B) in introns of
PGA are almost identical.

As in Section 3.5, the circular code periodicity 0 modulo 3 can
be hidden by the periodicity 1 modulo 2 in introns of Plants Green
Algae PGA. Thus, by applying the same approach, we identify the
particular trinucleotides 𝑁1𝑁2𝑁1 in 𝑋1(3.1) and 𝑋2(3.2). There are 5
trinucleotides 𝑁1𝑁2𝑁1 = {𝐴𝐶𝐴,𝐴𝑇𝐴,𝐺𝐶𝐺,𝐺𝑇𝐺, 𝑇𝐶𝑇 } in 𝑋1. There
are (obviously) also 5 trinucleotides 𝑁1𝑁2𝑁1 = {𝐴𝐺𝐴,𝐶𝐴𝐶,𝐶𝐺𝐶,
𝑇𝐴𝑇 , 𝑇𝐺𝑇 } in 𝑋2. Thus, when computing the function 𝐴𝑋1 ,𝑋1

(𝑖, 𝐹 ), the
5 series (𝐴𝐶)+, (𝐴𝑇 )+, (𝐺𝐶)+, (𝐺𝑇 )+ and (𝑇𝐶)+ are replaced in introns
of PGA by 𝐴+. Similarly, when computing the function 𝐴𝑋2 ,𝑋2

(𝑖, 𝐹 ), the
5 series (𝐴𝐺)+, (𝐶𝐴)+, (𝐶𝐺)+, (𝑇𝐴)+ and (𝑇𝐺)+ are replaced in introns
of PGA by 𝐴+. Very interestingly, when these series are not considered,
the circular code periodicity 0 modulo 3 is retrieved in introns of
Plants Green Algae PGA with the functions 𝐴𝑋1 ,𝑋1

(𝑖, 𝐹 ) (Fig. 9(A)) and
𝐴𝑋2 ,𝑋2

(𝑖, 𝐹 ) (Fig. 9(B)).
In the next section, we study these particular trinucleotides 𝑁1𝑁2𝑁1

in the 216 maximal 𝐶3 self-complementary trinucleotide circular codes
(Arquès and Michel, 1996), noted 𝐶216.

3.7. A few new properties on circular codes

3.7.1. Trinucleotides 𝑁1𝑁2𝑁1 in the 216 maximal 𝐶3 self-complementary
trinucleotide circular codes

In the 216 maximal 𝐶3 self-complementary trinucleotide circular
codes 𝐶216, 24 codes 𝐶216 have no pair of trinucleotides {𝑁1𝑁2𝑁1,
(𝑁 )(𝑁 )(𝑁 )}. Four classes of 24 codes 𝐶216, thus 96 codes in
1 2 1
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Fig. 6. Circular code periodicity hidden by the periodicity modulo 2 (1 modulo 2)
and the mixed periodicity, now identified by the circular code autocorrelation function
𝐴𝑋,𝑋 (𝑖, 𝐹 ) (Eq. (2.4)) in 5 subgroups of introns (Table 2). The abscissa represents the
number 𝑖 of nucleotides 𝑁 between 𝑋 and itself, 𝑖 varying from 0 to 𝑛 = 20. The
rdinate gives the occurrence probability 𝐴𝑋,𝑋 (𝑖, 𝐹 ) of 𝑋𝑁 𝑖𝑋 in introns of: (A) Animals
mphibians AA (until 𝑖 < 14). (B) Animals Fishes AF (until 𝑖 < 17, except 𝑖 = 6). (C)
nimals Other Animals AOA. (D) Animals Reptiles AR (until 𝑖 < 14). (E) Animals Insects
I.
7

Fig. 7. Periodicities identified by the circular code autocorrelation function 𝐴𝑋1 ,𝑋1
(𝑖, 𝐹 )

(Eq. (2.4) with 𝑋1 defined in (3.1)) in 2 subgroups of introns (Table 2). The abscissa
represents the number 𝑖 of nucleotides 𝑁 between 𝑋1 and itself, 𝑖 varying from 0
to 𝑛 = 20. The ordinate gives the occurrence probability 𝐴𝑋1 ,𝑋1

(𝑖, 𝐹 ) of 𝑋1𝑁 𝑖𝑋1:
(A) Circular code periodicity 0 modulo 3 in introns of Fungi Ascomycetes FA. (B)
Periodicity 1 modulo 2 in introns of Plants Green Algae PGA.

Fig. 8. Periodicities identified by the circular code autocorrelation function 𝐴𝑋2 ,𝑋2
(𝑖, 𝐹 )

(Eq. (2.4) with 𝑋2 defined in (3.2)) in 2 subgroups of introns (Table 2). The abscissa
represents the number 𝑖 of nucleotides 𝑁 between 𝑋2 and itself, 𝑖 varying from 0
to 𝑛 = 20. The ordinate gives the occurrence probability 𝐴𝑋2 ,𝑋2

(𝑖, 𝐹 ) of 𝑋2𝑁 𝑖𝑋2:
(A) Circular code periodicity 0 modulo 3 in introns of Fungi Ascomycetes FA. (B)
Periodicity 1 modulo 2 in introns of Plants Green Algae PGA.
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Fig. 9. Circular code periodicity hidden by the periodicity modulo 2 (1 modulo 2)
in introns of Plants Green Algae PGA (Table 2) identified by the circular code auto-
correlation functions 𝐴𝑋1 ,𝑋1

(𝑖, 𝐹 ) (Eq. (2.4) with 𝑋1 defined in (3.1)) and 𝐴𝑋2 ,𝑋2
(𝑖, 𝐹 )

(Eq. (2.4) with 𝑋2 defined in (3.2)). The abscissa represents the number 𝑖 of nucleotides
𝑁 between: (A) 𝑋1 and itself; (B) 𝑋2 and itself, 𝑖 varying from 0 to 𝑛 = 20. The ordinate
gives the occurrence probability: (A) 𝐴𝑋1 ,𝑋1

(𝑖, 𝐹 ) of 𝑋1𝑁 𝑖𝑋1. (B) 𝐴𝑋2 ,𝑋2
(𝑖, 𝐹 ) of 𝑋2𝑁 𝑖𝑋2.

total, have one trinucleotide pair: {𝐴𝐶𝐴, 𝑇𝐺𝑇 } or {𝐴𝐺𝐴, 𝑇𝐶𝑇 } or
{𝐶𝐴𝐶,𝐺𝑇𝐺} or {𝐶𝑇𝐶,𝐺𝐴𝐺}. Two classes of 8 codes 𝐶216, thus 16
codes in total, have two trinucleotide pairs: {𝐴𝐶𝐴,𝐶𝑇𝐶,𝐺𝐴𝐺, 𝑇𝐺𝑇 }
or {𝐴𝐺𝐴,𝐶𝐴𝐶,𝐺𝑇𝐺, 𝑇𝐶𝑇 }. Two classes of 40 codes 𝐶216, thus 80
codes in total, have two trinucleotide pairs: {𝐴𝐶𝐴,𝐴𝐺𝐴, 𝑇𝐶𝑇 , 𝑇𝐺𝑇 } or
{𝐶𝐴𝐶,𝐶𝑇𝐶,𝐺𝐴𝐺,𝐺𝑇𝐺}. Obviously, by definition of code circularity,
the 2 trinucleotide pairs {𝐴𝑇𝐴, 𝑇𝐴𝑇 } and {𝐶𝐺𝐶,𝐺𝐶𝐺} (case where
𝑁1 = (𝑁2)) cannot exist in the 216 codes 𝐶216.

3.7.2. Hexanucleotide codes modelling the periodicity 3 modulo 6
A striking property links the 3 classes of introns (modulo 2, modulo

3, modulo 2 and 3) (Section 3.3): a subperiodicity 3 modulo 6 (a
multiple of 2 and 3). We propose a hexanucleotide code (words of 6
nucleotide length) to explain the periodicity 3 modulo 6. The code
{𝑋 ⋅ 𝑋} where 𝑋 ⊂ 𝐵3∖𝑋 can generate the following sequence
1
0𝑥

1
1𝑥

1
2𝑥

1
0𝑥

1
1𝑥

1
2 | 𝑥20𝑥

2
1𝑥

2
2𝑥

2
0𝑥

2
1𝑥

2
2 | 𝑥30𝑥

3
1𝑥

3
2𝑥

3
0𝑥

3
1𝑥

3
2 | 𝑥40𝑥

4
1𝑥

4
2𝑥

4
0𝑥

4
1𝑥

4
2 | ... where

0𝑥1𝑥2 ∈ 𝑋 and 𝑥0𝑥1𝑥2 ∈ 𝑋. Then 𝑥10𝑥
1
1𝑥

1
2 ∈ 𝑋 and 𝑥20𝑥

2
1𝑥

2
2 ∈ 𝑋

re separated by 3 nucleotides, 𝑥10𝑥
1
1𝑥

1
2 ∈ 𝑋 and 𝑥30𝑥

3
1𝑥

3
2 ∈ 𝑋, by 9

ucleotides, 𝑥10𝑥
1
1𝑥

1
2 ∈ 𝑋 and 𝑥40𝑥

4
1𝑥

4
2 ∈ 𝑋, by 15 nucleotides, 𝑥20𝑥

2
1𝑥

2
2 ∈

and 𝑥30𝑥
3
1𝑥

3
2 ∈ 𝑋, by 3 nucleotides, etc., thus generating a periodicity

modulo 6 with the circular code 𝑋. Such a hexanucleotide code could
e a trace of more general circular codes at the origin of the circular
ode 𝑋(1.1) observed in genes. From a theoretical point of view, the
efinition and the combinatorial results of hexanucleotide codes with
he properties of circularity, self-complementarity and of inclusion of
he circular code 𝑋, are an open problem.

. Conclusion

A circular code periodicity modulo 3 is identified in 5 subgroups
f introns: birds, ascomycetes, basidiomycetes, green algae and land
lants. This circular code periodicity, which is a property of retrieving
8

the reading frame in (protein coding) genes, may suggest that these
introns have a coding property and could be extinct genes, i.e. non
functional genes. To our knowledge, such a property of introns has
never been identified. It should refine the evolutionary hypotheses
about introns.

A well-known periodicity modulo 2 is observed in 6 subgroups
of introns: amphibians, fishes, mammals, other animals, reptiles and
apicomplexans, thus almost the complete group of animals, except the
birds and the insects. A mixed periodicity modulo 2 and 3 is found in
the introns of insects. These statistical observations raise the following
problem: is the circular code periodicity modulo 3 hidden by the
periodicity modulo 2 and the mixed periodicity in these introns?

Very interestingly, when the particular trinucleotides 𝑁1𝑁2𝑁1 of
the circular code 𝑋 are not considered, i.e. 𝐶𝑇𝐶 and 𝐺𝐴𝐺, the circular
code periodicity modulo 3, hidden by the periodicity modulo 2, is now
retrieved in 5 groups of introns: amphibians, fishes, other animals,
reptiles and insects (except for the mammals and apicomplexans),
although noisier than in the genes. In summary, 10 groups of introns,
taxonomically different, out of 12 have a coding property related to the
reading frame retrieval.

The trinucleotides 𝑁1𝑁2𝑁1 are analysed in the 216 maximal 𝐶3 self-
omplementary trinucleotide circular codes. This class of trinucleotides
hich is associated with a periodicity modulo 2, deserves special
ttention in the theory of circular codes. Finally, a hexanucleotide code
words of 6 letters) is proposed to explain the periodicity 3 modulo 6.
t could be a trace of more general circular codes at the origin of the
ircular code 𝑋 observed in genes.
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