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Abstract
The genome galaxy identified in bacteria is studied by expressing the reading frame
retrieval (RFR) function according to the Y Z -content (GC-, AG- and GT -content)
of bacterial codons. We have developed a simple probabilistic model for ambiguous
sequences in order to show that theRFR function is ameasure of the gene reading frame
retrieval. Indeed, the RFR function increases with the ratio of ambiguous sequences
and the ratio of ambiguous sequences decreases when the codon usage dispersion
increases. The classical GC-content is the best parameter for characterizing the upper
arm, which is related to bacterial genes with a low GC-content, and the lower arm,
which is related to bacterial genes with a high GC-content. The galaxy center has
a GC-content around 0.5. Then, these results are confirmed by expressing the GC-
content of bacterial codons as a function of the codon usage dispersion. Finally, the
bacterial genome galaxy is better described with the GC3-content in the 3rd codon
site compared to the GC1-content and GC2-content in the 1st and 2nd codons sites,
respectively.Whereas the codon usage is used extensively by biologists, its dispersion,
which is an important parameter to reveal this genome galaxy, is surprisingly little
known and unused. Therefore, we have developed a mathematical theory of codon
usage dispersion by deriving several formulæ. It shows three important parameters
in codon usage: the minimum and maximum codon probabilities and the number of
codonswith high frequency, i.e.with a probability at least 1/64.By applying this theory
to the evolution of the genetic code, we see that bacteria have optimised the number
of codons with high frequency to maximise the codon dispersion, thus maximising
the capacity to retrieve the reading frame in genes. The derived formulæ of dispersion
can be easily extended to any weighted code over a finite alphabet.
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1 Introduction

Based on the circular code theory, a beautiful and intriguing “galaxy” structure has
been identified in the genomes of bacteria, as well as of eukaryota and archaea (Michel
and Sereni 2023). This genome galaxy has a center and two arms, an upper one and
a lower one, a structure that is identified for the three kingdoms (Michel and Sereni
2023, Figures 5, 7 and 8). The aim of this work is to characterise this genome galaxy
for bacteria.

The circular code theory has been initiated in 1996 by the identification in genes
of bacteria and eukaryotes, of a maximal C3 self-complementary circular code, a
particular set called X of 20 trinucleotides with interesting mathematical properties
allowing to retrieve the reading frame and the two shifted frames in genes (Arquès
andMichel 1996). In 2017, it has been shown that this circular code X is also found in
genes of archaea, plasmids and viruses (Michel 2017). The historical context of this
result is described in a recent article (Michel 2020). We also refer the reader to the
reviews (Michel 2008; Fimmel and Strüngmann 2018) for the biological context and
the main combinatorial studies of circular codes.

This unexpected biological result has led to several mathematical developments
since 1996: (i) the flower automaton (Arquès and Michel 1996); (ii) the neck-
laces L DN (letter diletter necklace) and DL N (diletter letter necklace) (Pirillo 2003;
Michel et al. 2008a, b) extended to (n + 1)L DCC N (letter diletter continued closed
necklaces) (Michel and Pirillo 2010); (iii) the group theory (Fimmel et al. 2015); and
(iv) the recent and powerful approach based on graph theory in 2016 (Fimmel et al.
2016). The graph approach has recently led to two important generalizations: mixed
circular codes (Fimmel et al. 2019) and k-circular codes (Fimmel et al. 2020; Michel
et al. 2022; Michel and Sereni 2022).

These theoretical results have led to biological applications, to name a few recent
ones: identification of “universal” circular code motifs in the ribosome leading to a
model of genetic code evolution associating codes, translation systems, and peptide
products at different stages, from the primordial translation building blocks to the
ancestor of the modern ribosome present in the Last Universal Common Ancestor
(LUCA) (Dila et al. 2019); identification of a circular code periodicity (modulo 3) in
a large region of the 16S rRNA including the 3’ major domain corresponding to the
primordial proto-ribosome decoding center, containing numerous sites that interact
with the tRNA and the mRNA during translation and surrounding the mRNA channel
(Michel and Thompson 2020); potential role of the circular code X in the regulation
of gene expression (Thompson et al. 2021); and characterization of accessory genes
in coronavirus genomes using the circular code information (Michel et al. 2020).

On the genetic alphabet, there are 264 − 1 ≈ 1019 (non-empty) trinucleotide
codes: 64 codes of cardinality 1 ({AAA}, . . . , {T T T }); 2016 codes of cardinal-
ity 2 ({AAA, AAC}, . . . , {T T G, T T T }); 41664 codes of cardinality 3 ({AAA, AAC,

AAG}, . . . , {T T C, T T G, T T T }); and so on up to 1 code of cardinality 64 (the genetic
code {AAA, . . . , T T T }). The recent theory of trinucleotide k-circular codes makes
it possible to study the property of reading frame retrieval (RFR), called circularity
property, for any of these ≈ 1019 codes (Michel et al. 2022; Michel and Sereni 2022).
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The genome galaxy of bacteria will be analysed by the RFR function f (see Defini-
tion 2.13) that can be applied to the codon usage, and two codon parameters: dispersion
(see Definition 2.7) and Y Z -content (see Definition 2.9). The Y Z -content of codon
is a simple extension of the GC-content, a main parameter to study the codon usage
bias (CUB) that influences different aspects of protein production (Grantham et al.
1981) and has effects at many biological stages, including transcription (Zhou et al.
2016), translation efficiency (Qian et al. 2012), mRNA stability (Presnyak et al. 2015),
protein folding (Buhr et al. 2016) and protein function (Bali and Bebok 2015) (recent
review in Parvathy et al. 2022). In addition, from a theoretical point of view, our work
puts for the first time the circular code theory with its RFR function f in relation to
the codon usage with its GC-content.

This article is organised as follows. The necessary definitions and notation of trinu-
cleotide codes, circular codes and their generalization to k-circular codes are gathered
in Sect. 2.1. Section2.2 defines the dispersion function of codon usage and states a
proposition about its range. Section2.3 defines the Y Z -content. Section2.4 defines
the reading frame retrieval (RFR) function and states several propositions concerning
its range and its particular value 1 associated with a uniform codon usage. Section2.5
explains why the RFR function is a measure of the gene reading frame retrieval. Sec-
tion2.6 defines the parameters involved in our mathematical theory of codon usage
dispersion. Section2.7 describes the acquisition of codon usage for the genomes of
bacteria from the codon statistics database (CSD) (Subramanian et al. 2022).

The results are presented in two main parts parts. Section3 presents new statistical
results of the bacterial genome galaxy. It is divided into three parts. Section3.1 char-
acterizes the genome galaxy of bacteria with its center, its upper arm and its lower
arm. Section3.2 shows that one parameter, the Y Z -content of codon, and mainly the
GC-content, allows the identification of the three structures of the genome galaxy.
Section3.3 demonstrates that the dispersion of codon usage is mainly related to the
GC-content of codon and that the GC3-content in the 3rd codon site is a main factor
for the reading frame retrieval (RFR) function of genes.

Section 4 develops a mathematical study of codon usage dispersion, an analysis
which, to our knowledge, has never been carried out. It is divided into two parts.
Section4.1 derives several formulæ of codon usage dispersion. Section4.2 gives three
applications of this mathematical study to the evolution of the bacterial genetic code.
The maximum dispersion of the current genetic code at 64 codons is analysed as
a function of its codon of maximum probability (Sect. 4.2.1) and that of minimum
probability (Sect. 4.2.2). Moreover, Sect. 4.2.3 studies the minimum and maximum
dispersions of the evolutionary genetic code as functions of its number of codons,
from 1 to 64.

2 Method

2.1 Definitions and Notation

For the reader’s convenience, and to have this article self-contained, we here recall the
most relevant notions.The theoretical aspects,with computer results, proofs, examples,
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remarks, illustrations and refinements are found in the articles (Michel et al. 2022;
Michel and Sereni 2022, 2023).

We work with the genetic alphabet B:={A, C, G, T }, which has cardinality 4. An
element N of B is called nucleotide. A word over the genetic alphabet is a sequence of
nucleotides. A trinucleotide is a sequence of 3 nucleotides, that is, using the standard
word-theory notation, an element of B3. Ifw = N1 · · · Ns andw′ = N ′

1 · · · N ′
t are two

sequences of nucleotides of respective lengths s and t , then the concatenation w · w′
of w and w′ is the sequence N1 · · · Ns N ′

1 · · · N ′
t composed of s + t nucleotides.

Given a sequence w = N1N2 · · · Ns ∈ Bs and an integer j ∈ {0, 1, . . . , s − 1}, the
circular j-shift of w is the word N j+1 · · · Ns N1 · · · N j . Note that the circular 0-shift
ofw isw itself. A sequencew′ of nucleotides is a circular shift ofw ifw′ is the circular
j-shift ofw for some j ∈ {0, 1, . . . , s −1}. The elements inB3 can thus be partitioned
into conjugacy classes, where the conjugacy class of a trinucleotide w ∈ B3 is the set
of all circular shifts of w.

Definition 2.1 Let B be the genetic alphabet.

• A trinucleotide code is a subset of B3, that is, a set of trinucleotides.
• If X is a trinucleotide code and w is a sequence of nucleotides, then an X -

decomposition of w is a tuple (x1, . . . , xt ) ∈ Xt of trinucleotides from X such
that w = x1 · x2 · · · xt .

We now formally define the notion of circularity of a code, i.e. the property of
reading frame retrieval (RFR).

Definition 2.2 Let X ⊆ B3 be a trinucleotide code.

• Let m be a positive integer and let (x1, . . . , xm) ∈ Xm be an m-tuple of trinu-
cleotides from X . A circular X -decomposition of the concatenation c:=x1 · · · xm

is an X -decomposition of a circular shift of c.
• Let k be a non-negative integer. The code X is (�k)-circular if every concatenation
of trinucleotides from X that admits more than one circular X -decomposition
contains at least k + 1 trinucleotides. In other words, X is (�k)-circular if for
every m ∈ {1, . . . , k} and each m-tuple (x1, . . . , xm) of trinucleotides from X , the
concatenation x1 · · · xm admits a unique circular X -decomposition.

• The code X is k-circular if X is (�k)-circular and not (�k + 1)-circular.
• The code X is circular if it is (�k)-circular for all k ∈ N.

We recall the definition of the graph associated with a trinucleotide code (Fimmel
et al. 2016).

Definition 2.3 Let X ⊆ B3 be a trinucleotide code. We define a graph G(X) =
(V (X), E(X)) with set of vertices V (X) and set of arcs E(X) as follows:

• V (X):=
⋃

N1N2N3∈X

{N1, N3, N1N2, N2N3}; and
• E(X):= {N1 → N2N3 : N1N2N3 ∈ X} ∪ {N1N2 → N3 : N1N2N3 ∈ X}.

The graph G(X) is the graph associated with X .
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The length of a directed cycle in a graph G is the number of arcs of the cycle. We
note that every arc ofG(X) joins a nucleotide and a dinucleotide. Thus, the graphG(X)

cannot contain a directed cycle of odd length. A theorem (Fimmel et al. 2020, The-
orem 3.3) implies that a cycle in G(X), if any, must have length in {2, 4, 6, 8} and,
in particular, that a trinucleotide (�4)-circular code must be circular. As noted in a
previous article (Michel et al. 2022), it follows that all trinucleotide codes over B can
be naturally partitioned into 5 classes using the following definition.

Definition 2.4 We define the circularity cir(X) of a non-empty trinucleotide code X
to be the largest integer k ∈ {0, 1, 2, 3, 4} such that X is (�k)-circular.

Thus, the possible values of cir(X) for a trinucleotide code X are 0, 1, 2, 3, 4, which
determine the 5 classes.

Next we introduce two functions, which turn out to be correlated. The first one deals
with the dispersion of the codon usage, and the second one, which uses the graph, deals
with the property of reading frame retrieval (RFR) of genes. These two functions are
also analysed as a function of the mean number of codons per gene in each genome.

2.2 Dispersion of Codon Usage

We recall the definition and the proposition of codon usage introduced in a previous
work (Michel and Sereni 2023). A codon usage is uniform if every codon has the same
occurrence frequency. We shall introduce a function to measure the dispersion of
codon usage with respect to the uniform one.We write Xg instead ofB3, the particular
code of cardinality 64 containing all trinucleotides, which is the well-known genetic
code.

Definition 2.5 (Codon usage) Given any trinucleotide code X , a weight function on X
is a function ω : X → [0, 1] such that

∑
x∈X ω(x) = 1.

Definition 2.6 Aweighted trinucleotide code is a pair (X , ω)where X is a trinucleotide
code and ω is a weight function on X .

We can now define the dispersion of codon usage.

Definition 2.7 (Dispersion of codon usage, Michel and Sereni 2023, Definition 2.8)
For every weight function ω : Xg → [0, 1], the dispersion of codon usage in (Xg, ω)

is the function d given by

d((Xg, ω)) =
∑

x∈Xg

∣∣∣∣ω(x) − 1

64

∣∣∣∣ . (2.1)

The next proposition gives the extremal values taken by the function d.

PROPOSITION 2.8 (Michel and Sereni 2023, Proposition 2.9)For every weight func-
tion ω : Xg → [0, 1], we have

0 � d((Xg, ω)) � 63

32
≈ 1.97.
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Moreover, d((Xg, ω)) = 0 if and only if ω(x) = 1
64 for each trinucleotide x ∈ Xg. The

upper bound is attained if and only if there is a trinucleotide x ∈ Xg such that ω(x) = 1
(and hence ω(x ′) = 0 if x ′ �= x).

2.3 YZ-Content

Definition 2.9 Let n A, nC , nG and nT be the number of the nucleotide A, C , G and T
of B in the 3 codon sites. Let Y and Z be 2 different nucleotides of B. Then the
Y Z -content is the probability

Y Z -content = nY + nZ

N
(2.2)

where N = n A + nC + nG + nT .

Note that the number of codons is N/3. Obviously, Y Z -content = ZY -content
and Y Z -content + Y Z -content = 1 where the complementary nucleotide N of a
nucleotide N ∈ B is given by A = T , T = A, C = G and G = C . The classical
biological parameter is the GC-content. In this work, wewill also study the parameters
AG-content and GT -content.

The definition of the Y Z -content can easily be generalized to Y Zk-content associ-
ated with the kth codon site where k ∈ {1, 2, 3}. Note that, using the above notation,
the normalisation factor (i.e., the denominator) is not N but N/3, i.e. the number of
codons. The classical biological parameter is the GC3-content. In this work, we will
also study the parameters GC1-content and GC2-content.

2.4 Gene Reading Frame Retrieval (RFR) function associated with a codon usage

Theoretical considerations over trinucleotide codes led to the following definition
(Michel and Sereni 2022, Definition 6.1) as a measure of the reading frame retrieval
of genes. Indeed, the number and length of cycles in the graph are associated with
ambiguous sequences that do not retrieve the reading frame. Short cycles are associated
with short ambiguous sequences, i.e. the reading frame is lost quickly (e.g., after 1
trinucleotide), in contrast to long cycles where the ambiguous sequences are long,
i.e. the reading frame is lost after several trinucleotides, up to 4 trinucleotides (see
Michel et al. 2022; Michel and Sereni 2022 for details). We will explain this important
property in detail in the following Sect. 2.5.

Definition 2.10 (Michel and Sereni 2022, Definition 6.1) The reading frame loss func-
tion f of a trinucleotide code X is the mapping f : B3 → R given by

f (X):= q8(G(X)) + 4

3
q6(G(X)) + 2 q4(G(X)) + 4 q2(G(X)) =

4∑

i=1

4

i
· q2·i (G(X))

(2.3)
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where qi (G) is the number of directed cycles of length i in the graph G for every
positive integer i .

The next proposition gives the minimum and maximum values taken by f over all
trinucleotide codes.

PROPOSITION 2.11 (Michel and Sereni 2022, Proposition 6.2) For every trinu-
cleotide code X, we have 0 � f (X) � 301056. Moreover, f (X) = 0 if and only
if X is a trinucleotide circular code, and f (X) = 301056 if and only if X is the
genetic code Xg, where

q2(Xg) = 64, q4(Xg) = 1440, q6(Xg) = 26880, q8(Xg) = 262080.

The function f generalises to the codon usage, where each trinucleotide x has
occurrence frequency w(x).

Definition 2.12 (Michel and Sereni 2023, Definition 2.12) Let (X , ω) be a weighted
trinucleotide code. The weighted graph associated with ω is the pair (G(X), ω′)
where G(X) is given by Definition 2.3 with respect to X , andω′ is a function assigning
to each of the two arcs of G(X) coming from a trinucleotide N1N2N3 ∈ X the rational
number ω(N1N2N3)

2 ∈ [0, 1].
In other words, the arcs of the weighted graph (G(X), ω′) can be written as follows:
{

N1
ω(x)/2−−−−→ N2N3 : x = N1N2N3 ∈ X

}
∪
{

N1N2
ω(x)/2−−−−→ N3 : x = N1N2N3 ∈ X

}
.

The generalised function f associated with every weighted trinucleotide code that
has identified the genome galaxy in bacteria, archaea and eukaryota, has been defined
as follows.

Definition 2.13 (Michel and Sereni 2023, Definition 2.13) Let (X , ω) be a weighted
trinucleotide code and (G(X), ω′) its associated weighted graph. Let C be the set of
all directed cycles of G(X). The loss of reading frame retrieval (RFR) function f of
(X , ω) is the mapping f given by

f ((X , ω)):= 1

|C|
∑

c∈C
(2|X |)|c|

∏

a∈E(c)

ω′(a) (2.4)

where E(c) is the set of arcs of the directed cycle c.

For the convenience of the reader, we recall three propositions (without proof).

PROPOSITION 2.14 (Uniform codon usage, Michel and Sereni 2023, Proposi-
tion 2.14) Let Xg be the genetic code and let ω the uniform distribution over Xg,
that is, ω : Xg → [0, 1] is constant and equal to 1

64 . Then f ((Xg, ω)) = 1.

The next proposition implies that for circular codes, the weight function ω has no
significance for f , in the sense that all distributions yield the same value as the uniform
one, namely 0.
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PROPOSITION 2.15 (Circular code, Michel and Sereni 2023, Proposition 2.15)
Let (X , ω) be a weighted trinucleotide code. Then f ((X , ω)) = 0 if and only if X is
a circular code.

The function f seems to be maximised by codes obtained from a circular code
of maximal size (20) by adding a periodic trinucleotide x (i.e. AAA, CCC , GGG
or T T T ), with a weight function tending to 1 on x and 0 on all other trinucleotides,
leading to the following observation.

PROPOSITION 2.16 (Michel and Sereni 2023, Proposition 2.16) We have

sup{ f (X , ω) : (X , ω) weighted trinucleotide code} � 441.

That is, for every ε > 0, there exists a weighted trinucleotide code (X , ω) such
that f (X , ω) > 441 − ε.

2.5 Probabilistic Model for Ambiguous Sequences

The RFR function of a weighted trinucleotide code is associated with the ambiguous
sequences that do not retrieve the reading frame. In order to demonstrate this property,
we describe a simple probabilistic model M1 to quantify the capacity of a weighted
trinucleotide code to retrieve the reading frame.

Let (Xg, ω) be a weighted trinucleotide code, where, as already mentioned, Xg

is the genetic code of cardinality |Xg| = 64. Real-life genomes usually comprise
all 64 codons. So we assume that w is positive, i.e. w(x) > 0 for each x ∈ Xg . As a
consequence, every sequence of codons is ambiguous, i.e. it can be read in all 3 frames
when written on a circle. We use the codon frequency of the sequences to quantify
whether a sequence and its circular shifts can be identified, or not, as being in reading
frame. Let us formalize this problem.

We fix a positive length m and consider all sequences (concatenations) composed
of m trinucleotides of Xg , that is all sequences of s = 3m nucleotides (as defined in
Sect. 2.1). We want to determine the probability of detection error between any given
sequence w = N1 · · · Ns composed of s nucleotides (hence m trinucleotides) and its
circular 1-shift w1 = N2 · · · Ns N1. We consider this case appears when at least one of
the sequences w and w1 occurs frequently enough and the discrepancy between their
two codon frequencies is not too large. These conditions depend on the weight ω, i.e.
the codon usage. This approach is based on the two following observations:

Observation (i) if both w and w1 have a low probability of occurring (i.e., under
an arbitrarily fixed threshold) then an error on their reading frame
does not occur often, and thus could be considered biologically
insignificant; and

Observation (ii) if one of them, say w1 for instance, occurs much less frequently
than w, then it is certain to consider the reading frame of w rather
than that of w1, since this frame will be “almost always” correct.

Consequently, every such couple (w,w1) in these two cases is considered not to
represent a problematic ambiguity regarding the reading frame.
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We now define the codon frequency of the sequence w = N1 · · · Ns composed of
the m codons xi = N3i+1N3i+2N3i+3 for each i ∈ {0, . . . , m − 1}. The probability of
a codon x ∈ Xg is directly given by the weight functionω. By assuming independence
of the codon frequencies within a sequence, then the probability p(w) of w is

p(w) =
m−1∏

i=0

ω(xi ). (2.5)

Fix two reals ε > 0 and R > 1, which will be used as a threshold and a ratio
bound, respectively. For each such sequence w, we compute its probability p(w) and
the probability p(w1) of its circular 1-shift w1. We say these two sequences w and w1
are ambiguous if:

(1) p(w) > ε and p(w1) >
p(w)

R
; or

(2) p(w1) > ε and p(w) >
p(w1)

R
.

(2.6)

When none of these two cases occurs, we consider the sequences to be not ambiguous
as explained earlier (see Observation (i) and Observation (ii)).

We additionally note that the condition to declarew andw1 ambiguous is symmetric
with respect to w and w1. Therefore, it is enough to consider circular 1-shifts. Indeed,
with sequences of trinucleotides, if w2 is the circular 2-shift of w, then w is the
circular 1-shift of w2, so that the pair {w,w2} will be dealt with anyway.
Example 2.17 We use the (average) codon usage of Xg provided in Appendix Table 1
to define ω, so ω(AAA) = 0.0237 and ω(T T T ) = 0.0161 for instance. Consider the
sequencew = AAA · AAC · AAG composed ofm = 3 codons. The probability ofw is
p(w) = ω(AAA)×ω(AAC)×ω(AAG) = 0.0237×0.0180×0.0200 ≈ 8.5×10−6.
The circular 1-shift ofw is the sequencew1 = AAA· AC A· AG A, and hence p(w1) =
ω(AAA) × ω(AC A) × ω(AG A) = 0.0237 × 0.0093 × 0.0054 ≈ 1.2 × 10−6.

Suppose, for example, that the threshold is ε = 1
|Xg |3 = 1

643
≈ 3.8 × 10−6 and the

ratio bound is R = 10. We then see that p(w) > ε and in addition that p(w1) >
p(w)
10 .

Therefore with these parameters the sequences w and w1 are ambiguous according to
(2.6).

We perform the above test (2.6) for all sequences of m trinucleotides, giving us
the number a of ambiguous pairs. The normalisation of a by dividing it by the total
number |Xg|m of such sequences, leads to the ratio r (rational number in [0, 1]) of
ambiguous sequences (ofm trinucleotides) for theweighted trinucleotide code (Xg, ω)

r = a

|Xg|m = a

64m
. (2.7)

This ratio r can be interpreted as the probability that a sequence of m consecutive
trinucleotides is ambiguous, meaning that there is a significant detection error of the
reading frame.
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Remark 2.18 There is no uniquemodel to quantify the reading frame retrieval capacity
of all the bacterial genomes. A 2nd model M2 can consider a “shifted” codon usage
of sequences in a shifted frame. Given a sequence w and its circular 1-shift w1, the
probability that w1 occurs in reading frame 1 can be computed using probabilities
obtained by shifting the original (i.e. frame 0) codon usage. Specifically, the weightω1
for each trinucleotide N1N2N3 ∈ Xg is defined as follows:

ω1(N1N2N3) =
(
∑

N∈B
ω(N N1N2)

)
·
⎛

⎝
∑

N ′,N ′′∈B
ω(N3N ′N ′′)

⎞

⎠ . (2.8)

Indeed, N1N2N3 is read in frame 1 if and only if N N1N2 ·N3N ′N ′′ is read in frame 0
for some N , N ′, N ′′ ∈ B. The probability of a given concatenation w = N1 · · · Ns

of s = 3m nucleotides then depends on the position of the sequence with respect
to the actual reading frame: if this sequence occurs in frame 0 then the probability
is, as before, p(w) = ∏m

i=1 ω(xi ), while if it occurs in frame 1 then the probability
becomes p1(w) = ∏m

i=1 ω1(xi ). Using conditions analogous to (2.6), the modelM2
recovers results similar to themodelM1 (not shown to avoid overloading the content).

Finally, a 3rd model M3 can also be based on p2(w) by shifting the 1-frame
codon usage. Then, w can be considered unambiguous if one of the 3 probabili-
ties p(w), p1(w) and p2(w) is “significantly greater” than the other two. But in this
case, as almost all sequences are ambiguous, the use of a threshold (similar to Obser-
vation (i)) is necessary. ThemodelM3 finds similar results to the previousmodelsM1
and M2 (not shown).

The ratio r (2.7) of ambiguous sequences will be computed in Sects. 3.1.2, 3.1.3
and 3.2 on all sequences of m = 4 trinucleotides with the threshold ε = 1

10·644 and
the ratio bound R = 10. We have also performed computer calculations on shorter
and longer sequences (namely m = 3 and m = 5) with the corresponding threshold
(i.e. ε = 1

10·64m ) and obtained similar results (not shown). Other thresholds and ratio
bounds were also analysed (in particular ε = 1

64m ), and they led to similar results
(similar shapes, only scaled along to the x-axis; not shown).

2.6 Parameters of a Codon Usage

Given a codon usage, or equivalently a weighted trinucleotide code W = (Xg, ω)

over the genetic code Xg , we retain several parameters that seem to influence in a
non-trivial way the gene reading frame retrieval (RFR) function.

First, we discriminate between the trinucleotides that occur, and those that do not
— or are so rare that are considered not to occur. Second, over these trinucleotides,
we retain the lowest and the highest possible value of ω, and also the number of
trinucleotides with “high frequency”.

Definition 2.19 Let W = (Xg, ω) be a weighted trinucleotide code. We define

(1) pM(W) = max
{
ω(x) : x ∈ Xg

}
;
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(2) pm(W) = min
{
ω(x) : x ∈ Xg and ω(x) > 0

}
;

(3) the number n(W) of trinucleotides x that occur, that is such that ω(x) > 0; and
(4) the number nh(W) of trinucleotides x of high frequency, that is such that ω(x) �

1
n(W)

.

2.7 Data

From the codon statistics database (CSD, http://codonstatsdb.unr.edu) (Subramanian
et al. 2022), we have extracted (July 2022) the codon usage of genomes of bacte-
ria from the union of the 22 following bacterial classes: Acidobacteria (Id 57723),
Actinobacteria (Id 201174), Aquificae (Id 187857), Bacteroidetes (Id 976), Balneo-
lia (Id 1853221), Chlamydiia (Id 204429), Chloroflexi (Id 200795), Cyanobacteria
(Id 1117), Deferribacteres (Id 68337), Deinococcus-Thermus (Id 1297), Epsilonpro-
teobacteria (Id 29547), Firmicutes (Id 1239), Fusobacteria (Id 32066), Mycoplas-
matales (Id 2085), Nitrospirae (Id 40117), Planctomycetes (Id 203682), Pseudomon-
adales (Id 72274), Spirochaetes (Id 203691), Synergistetes (Id 508458), Thermodesul-
fobacteria (Id 200940), Thermotogae (Id 200918) and Verrucomicrobia (Id 74201).
The few exceptional genomes inwhich the codon usage of the stop codons is not given,
are not considered. Thus, the bacterial kingdom contains 8,345 genomes, 34,020,997
genes and 11,087,876,805 codons.

The calculus of the codon usage in this bacterial kingdom is given in Appendix
Table 1.

3 Statistical Study of the Bacterial Genome Galaxy

3.1 Identification of the Genome Galaxy of Bacteria

3.1.1 Gene Reading Frame Retrieval (RFR) Function According to the Dispersion
Function

By expressing the gene reading frame retrieval (RFR) function f (2.4) according to the
dispersion function d (2.1) of codon usage in the bacterial genomes, a “genomegalaxy”
with a center and two arms has been identified in a previous work (Michel and Sereni
2023, Figure 5, Section 3.2). By using the linear regression y = −1.35881x +1.37993
between d and f (with a Spearman rank correlation coefficient ρ = −0.83 and p-
value< 10−180), we characterize in this work these 3 structures. The galaxy center GC
is defined by the bacterial genomes such that

GC := d � 0.6. (3.1)

The upper arm GUA is defined by the bacterial genomes such that

GUA :=
⎧
⎨

⎩

d > 0.6
f > y
f > 0.2.

(3.2)
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Fig. 1 Genome galaxy of bacteria (8,345 genomes, 34,020,997 genes, 11,087,876,805 codons) with its
center GC (3.1) in blue, its upper arm GUA (3.2) in green and its lower arm GLA (3.3) in violet. Each
point represents all the genes of a bacterial genome. The x-axis shows the dispersion function d (2.1) of
codon usage. The y-axis shows the reading frame retrieval function f (2.4) (Color figure online)

The lower arm GLA is defined by the bacterial genomes such that

GLA :=
{

f < y if d ∈]0.6, 0.9]
f < 0.2 if d > 0.9.

(3.3)

Figure1 describes this genome galaxy of bacteria with its center GC (3.1) in blue, its
upper arm GUA (3.2) in green and its lower arm GLA (3.3) in violet.

Several parameters are now investigated to analyse this codon dispersion. Surpris-
ingly, in a next section, one parameter, the Y Z -content of codon (Sect. 2.3), allows the
identification of the three structures of the genome galaxy.

3.1.2 Gene Reading Frame Retrieval (RFR) Function According to the Ratio of
Ambiguous Sequences

By expressing the gene reading frame retrieval (RFR) function f (2.4) according to
the ratio r (2.7) of ambiguous sequences, Fig. 2 shows that the RFR function increases
with the ratio of ambiguous sequences. Figure2 is a “mirror image” of Fig. 1.

3.1.3 Ambiguous Sequences According to the Codon Usage Dispersion

By expressing the ratio r (2.7) of ambiguous sequences according to the codon usage
dispersion d (2.1), Fig. 3 shows that the ratio of ambiguous sequences decreases when
the codon usage dispersion increases. The dispersion of codon usage and the ratio of
ambiguous sequences vary in opposite direction.
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Fig. 2 Genome galaxy of bacteria (8,345 genomes, 34,020,997 genes, 11,087,876,805 codons) with its
center GC (3.1) in blue, its upper arm GUA (3.2) in green and its lower arm GLA (3.3) in violet. Each point
represents all the genes of a bacterial genome. The x-axis shows the ratio r (2.7) of ambiguous sequences.
The y-axis shows the reading frame retrieval function f (2.4) (Color figure online)

Remark 3.1 It is very interesting to stress that the two arms of the bacterial genome
galaxy could be identified thanks to the RFR function function f (2.4) but not by the
ratio r (2.7) of ambiguous sequences (compare Figs. 1 and 3).

3.2 Genome Galaxy of Bacteria Identified by the GC-Content of Codon

By expressing the gene reading frame retrieval (RFR) function f (2.4) according to the
GC-content of codon, the 3 structures: centerGC (3.1), upper armGUA (3.2) and lower
arm GLA (3.3) are well characterized in Fig. 4A. The variation of the GC-content is
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Fig. 3 Genome galaxy of bacteria (8,345 genomes, 34,020,997 genes, 11,087,876,805 codons) with its
center GC (3.1) in blue, its upper arm GUA (3.2) in green and its lower arm GLA (3.3) in violet. Each
point represents all the genes of a bacterial genome. The x-axis shows the dispersion function d (2.1) of
codon usage. The y-axis shows the ratio r (2.7) of ambiguous sequences (Color figure online)

important and in the interval [0.2, 0.8]. Note that, AT being complementary to GC ,
the AT -content leads to a symmetrical figure with respect to y = 0.5 (not shown).
Thus, the upper arm is related to genomes with a low GC-content while the lower arm
is related to genomes with a high GC-content, the center being related to genomes
with a GC-content around 0.5.

The variation of the AG-content (or equivalentlyG A-content as alreadymentioned)
is restricted to the interval [0.45, 0.60]. The upper and lower arms are still separated
but to a lesser extent (Fig. 4B).

The variation of the GT -content is restricted to the interval [0.45, 0.55]. The upper
and lower arms are neighbours (Fig. 4C). Thus, the GT -content is not a parameter for
characterizing the genome galaxy.
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Fig. 4 Genome galaxy of
bacteria (8345 genomes,
34,020,997 genes,
11,087,876,805 codons) with its
center GC (3.1) in blue, its upper
arm GUA (3.2) in green and its
lower arm GLA (3.3) in violet,
identified by the Y Z -content of
codon, and mainly by the
GC-content. Each point
represents all the genes of a
bacterial genome. The y-axis
shows the reading frame retrieval
function f (2.4). The x-axis
shows the Y Z -content of codon
in the 3 cases:
(A) GC-content;
(B) AG-content;
(C) GT -content (Color figure
online)

3.3 Dispersion of Codon Usage Related to the GC-Content of Codon

According to the previous results, it is natural to express the dispersion func-
tion d (2.1) of codon usage in the bacterial genomes according to their Y Z -content of

123



    5 Page 16 of 35 C. J. Michel, J.-S. Sereni

Fig. 5 Genome galaxy of
bacteria (8345 genomes,
34,020,997 genes,
11,087,876,805 codons) with its
center GC (3.1) in blue, its upper
arm GUA (3.2) in green and its
lower arm GLA (3.3) in violet,
identified by the Y Z -content of
codon, and mainly by the
GC-content. Each point
represents all the genes of a
bacterial genome. The x-axis
shows the dispersion
function d (2.1) of codon usage.
The y-axis shows the
Y Z -content of codon in the 3
cases:
(A) GC-content;
(B) AG-content;
(C) GT -content (Color figure
online)
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Fig. 6 Genome galaxy of bacteria (8345 genomes, 34,020,997 genes, 11,087,876,805 codons) with its
center GC (3.1) in blue, its upper arm GUA (3.2) in green and its lower arm GLA (3.3) in violet. Each point
represents all the genes of a bacterial genome. The x-axis shows the ratio r (2.7) of ambiguous sequences.
The y-axis shows the GC-content of codon (Color figure online)

codon (Sect. 2.3). Figure5A confirms that the GC-content better identifies the three
structures of the galaxy compared to the AG-content (Fig. 5B) and the GT -content
(Fig. 5C).

By expressing the GC-content of codon according to the ratio r (2.7) of ambiguous
sequences, Fig. 6 is, as expected, a “mirror image” of Fig. 5A.

In order to further analyse the results with the GC-content, we express the gene
reading frame retrieval (RFR) function f (2.4) according toGC-content in eachof the 3
codon sites. The three galaxy structures are well characterized with the GC3-content
in the 3rd codon site (Fig. 7C). The variation of the GC3-content covers almost the
entire interval [0.1, 1]. The upper arm is related to genomes with a low GC3-content
while the lower arm is related to genomes with a high GC3-content, the center being
related to genomes with a GC3-content around 0.5.
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Fig. 7 Genome galaxy of
bacteria (8345 genomes,
34,020,997 genes,
11,087,876,805 codons) with its
center GC (3.1) in blue, its upper
arm GUA (3.2) in green and its
lower arm GLA (3.3) in violet,
identified by the GC-content in
each of the 3 codon sites, and
mainly by the GC3-content.
Each point represents all the
genes of a bacterial genome.
The y-axis shows the reading
frame retrieval function f (2.4).
The x-axis shows the
GC-content in the 3 codon sites:
(A) GC1-content in the 1st
codon site;
(B) GC2-content in the 2nd
codon site;
(C) GC3-content in the 3rd
codon site (Color figure online)

The variation of theGC1-content is restricted to the interval [0.30, 0.80]. The upper
and lower arms are still separated but to a lesser extent (Fig. 7A).

The variation of the GC2-content is restricted to the interval [0.25, 0.55]. The upper
and lower arms are separated but close (Fig. 7B).
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In summary, the genome galaxy of bacteria with its center GC, its upper arm GUA
and its lower arm GLA is mainly related to the GC-content of codon, compared to
the AG-content and the GT -content, and in particular to the GC3-content in the 3rd
codon site, compared to the GC1-content and GC2-content.

4 AMathematical Study of Codon Usage Dispersion

Codon usage, i.e. the association of probabilities (frequencies) (Definition 2.5) with
the 64 codons, is a biological parameter that has been the most widely studied and
published. Surprisingly, the dispersion of codon usage (Definition 2.7) is a basic sta-
tistical parameter which, as far as we know, has been completely ignored in biology.
This section is divided into two parts. In the first part, we develop a mathematical
theory of dispersion by deriving various formulæ. In the second part, we apply this
theory to the evolution of the genetic code. In particular, we address the following
problem. In the current genetic code, not all 64 codons code for amino acids. Indeed,
there are 3 unused codons, precisely the 3 stop codons {T AA, T AG, T G A}, with a
probability equal to (close to) 0. The hypothesis that the genetic code evolves with
the appearance of codons, i.e. with a non-zero probability, over time will therefore be
studied.

4.1 Formulæ of Codon Usage Dispersion

We study the dispersion of the weighted trinucleotide codes W = (Xg, ω) over the
genetic alphabet Xg that satisfy certain properties. According to Definitions 2.6 and
2.19, we must have pM(W) � 1

n(W)
and pm(W) � 1

n(W)
. To ease the exposition, we

consider an arbitrary enumeration x1, . . . , x64 of Xg , and setωi = ω(xi ). Accordingly,
any weighted trinucleotide code over Xg can be viewed as the data of 64 non-negative
real numbers summing to 1. We use this identification in the sequel.

We want to fix the number of trinucleotides that occur, the number of those of
high frequency, and bounds on the minimum and maximum frequencies. To this end,
we fix integers n ∈ {1, . . . , 64} and nh ∈ {1, . . . , n}, along with positive real num-
bers pm, pM such that pm � 1

n � pM . Indeed, if each of the n trinucleotides that

occur has frequency at most pM , then n · pM � 1, since n · pM �
∑64

i=1 ωi = 1.
Similarly, if each of the n trinucleotides that occur has frequency at least pm , then
necessarily n · pm � 1. Furthermore, at least one trinucleotide must have frequency at
least 1

n , so we always assume that nh � 1. We note that for every nh ∈ {1, . . . , n −1},

n · pm � 1 ⇔ pm � 1

n
⇔ (n − nh) · pm � n − nh

n
⇔ nh

n
+ (n − nh) · pm � 1.

We consider only trinucleotide codes satisfying the following three conditions:

(1) for every i ∈ {1, . . . , nh} we have 1
n � ωi � pM ;

(2) for every i ∈ {nh + 1, . . . , n} we have pm � ωi � 1
n ; and

(3) for every i ∈ {n + 1, . . . , 64} we have ωi = 0.
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In other words, and referring to Definition 2.19, we require that

n(W) = n; nh(W) � nh; and pm � pm(W) � 1

n
� pM(W) � pM .

Another observation is that if pm = 1
n , then Conditions (2) and (3) totally determine

a unique weighted trinucleotide code, having wi = 1
n for i ∈ {1, . . . , n} and ωi = 0

for i ∈ {n + 1, . . . , 64}. It is similar if pM = 1
n . We thus assume in the rest of this

section that

pm <
1

n
< pM . (4.1)

We are interested in determining the minimum value and the maximum value taken
by the dispersion over all weighted trinucleotide codes satisfying Conditions (1)–
(3). We derive closed formulæ for these — along with weighted trinucleotide codes
attaining them.

Definition 4.1 GivenConditions (1)–(3) above and assuming (4.1), we define themax-
imum dispersion dM and the minimum dispersion dm as follows:

dM= dM(n, nh, pm, pM ) = sup {d(W) : W = (ω1, . . . , ω64) satisfies (1) − (3)} ;
(4.2)

and

dm = dm(n, nh, pm, pM ) = inf {d(W) : W = (ω1, . . . , ω64) satisfies (1) − (3)} .

(4.3)

The determination of the minimum dispersion dm is quick. It shows in particular
that the value of dm(n, nh, pm, pM ) does not depend on nh .

PROPOSITION 4.2 Suppose that Conditions (1)–(3) as above and (4.1) are satisfied.
Then

dm = 2
[
1 − n

64

]
. (4.4)

The proof of Proposition 4.2 is given in Appendix B.
The determination of the maximum dispersion dM is slightly more technical. We

have the following proposition.

PROPOSITION 4.3 Suppose that Conditions (1)–(3) as above and (4.1) are satisfied.
If

nh · pM + (n − nh) · pm � 1, (4.5)
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then

dM =

⎧
⎪⎪⎨

⎪⎪⎩

2

[(
pm − 1

64

)
· nh + 1 − n · pm

]
if pm � 1

64 , (4.6a)

2
[
1 − n

64

]
if pm > 1

64 . (4.6b)

If (4.5) does not hold, then with

ε = 1 − (
nh pM + (n − nh)pm

)
> 0, t0 =

⌊
ε

1/n − pm

⌋
,

and z1 = ε − t0 ·
(
1

n
− pm

)
,

we have

dM =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2

[(
pM − 1

64

)
· nh + t0

(
1

n
− 1

64

)]
if pm + z1 � 1

64 , (4.7a)

2

[(
pm − 1

64

)
(nh + t0 + 1) + 1 − n · pm

]
if pm + z1 > 1

64 and pm � 1
64 , (4.7b)

2
[
1 − n

64

]
if pm > 1

64 . (4.7c)

The proof of Proposition 4.3 is given in Appendix C.
Instead of imposing only a lower bound on the number nh of codons of high

frequency, as Condition (2) does, one could rather impose the exact number of such
codons. In this case, the optimal values given by Proposition 4.3 are not necessarily
always attained by a weighted trinucleotide code anymore, but are still the supremum
of the possible values, as we explain in Appendix D.

It is important to stress that this mathematical theory and its formulæ of dispersion,
i.e. Equations (4.4), (4.6a)–(4.6b) and (4.7a)–(4.7c), can be easily extended to any
weighted codes over a finite alphabet, e.g. the amino acid alphabet, by replacing 1/64
with the cardinality of the code.

4.2 Properties of the Genetic Code

In order to study the evolution of the bacterial genetic code and to apply the mathemat-
ical theory developed in Sect. 4.1, three parameters must be obtained from the bacterial
codon usage (see Appendix Table 1): the minimum probability, which is pm = 0.06%,
given by the codon of lowest occurrence, i.e. T AG; the maximum probability, which
is pM = 4.32%, given by the codon of highest occurrence, i.e. GCC ; and the number
of codonswith high frequency, i.e. with a probability greater than 1

64 ,which is nh = 25.
Note that nh

n = 25
64 since there are n = 64 occurring codons in the bacterial codon

usage.
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We start by studying the maximum dispersion of the current genetic code over 64
codons with respect to the frequency of its codon of maximum and minimum proba-
bilities.

4.2.1 MaximumDispersion of the Current Genetic Code as a Function of Its Codon of
Maximum Probability

Figure8 gives the maximum dispersion dM of the current genetic code with 64 codons
as a function of its number nh of codons with high frequency, nh ∈ {1, . . . , 64}, i.e.
codons x with a probability at least 1

n = 1
64 (ω(x) � 1

64 ). The minimum probabil-
ity is pm = 0.06%, given by the codon of lowest occurrence in bacteria, i.e. T AG
(see Appendix Table 1). We considered 3 different values for the maximum probabil-
ity pM : 4.32% associated with the codon of highest occurrence in bacteria, i.e. GCC
(see Appendix Table 1) (curve with green circles) and 2 arbitrarily chosen surround-
ing values: 3% (curve with violet disks) and 6% (curve with blue stars). Interestingly,
for any maximum probability pM the maximum dispersion dM increases to a max-
imum and then decreases to 0 at nh = 64. The curves have a common decreasing
slope of equation y = 1.9232 − 0.03005x (see Equation (4.6a), which does not
involve pM ), but different increasing slopes, and thus different maxima. The change

occurs for nh =
⌈
1−64pm
pM −pm

⌉
(see Equation (4.5)), and the maximum is thus attained

for nh =
⌊
1−64pm
pM −pm

⌋
or nh =

⌈
1−64pm
pM −pm

⌉
.

From Appendix Table 1, the number of codons with high frequency is nh = 25.
The maximum dispersion at nh = 25 is dM = 1.17. Very interestingly, this
value dM = 1.17 is very close to the maximum dM = 1.23 at nh = 23 of the
curve with pM = 4.32% that is associated with bacteria (see Fig. 8). As a biological
consequence, bacteria have optimised the number of codons with high frequency in
order to have a maximum of dispersion, and thus a maximum capacity to retrieve the
reading frame in genes.

4.2.2 MaximumDispersion of the Current Genetic Code as a Function of Its Codon of
Minimum Probability

Figure 9 gives the maximum dispersion dM of the current genetic code with 64 codons
as a function of its number nh of codons with high frequency. The maximum proba-
bility is pM = 4.32%, given by the codon of highest occurrence in bacteria, i.e. GCC
(see Appendix Table 1). We considered 3 different values for the minimum probabil-
ity pm : 0.06% associated with the codon of lowest occurrence in bacteria, i.e. T AG
(see Appendix Table 1) (curve with green circles) and 2 arbitrarily chosen surrounding
values: 0 (curve with violet disks) and 0.5% (curve with blue stars). The value 0 is seen
as a sort of limiting case for codons with very small frequencies, that is, when pm(W)

is a very small positive real. In theory, setting pm = 0 amounts to allowing the number
of occurring codons to vary (case studied in Sect. 4.2.3), whereas we keep n = 64
here. As in the previous case (Sect. 4.2.1), for any minimum probability pm the max-
imum dispersion dM increases to a maximum and then decreases to 0 at nh = 64.
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Fig. 8 Maximum dispersion dM of the current genetic code with 64 codons for three values of the codon of
maximum probability pM , the minimum probability pm = 0.06% being that of the codon T AG in bacteria
(see Appendix Table 1). The x-axis shows the number nh of codons with high frequency in the genetic
code, nh ∈ {1, . . . , 64}, i.e. codons x with a probability at least 1

64 (ω(x) � 1
64 ). The y-axis shows the

maximum dispersion dM (see Proposition 4.3) of codon usage. Three curves corresponding to different
values of the codon of maximum probability are displayed: pM = 4.32% associated with the codon GCC
in bacteria (see Appendix Table 1) (curve with green circles) and 2 arbitrarily chosen surrounding values,
namely pM = 3% (curve with violet disks) and pM = 6% (curve with blue stars) (Color figure online)

However, the curves have a common increasing slope of equation y = 0.05515x (see
Equation (4.7a)), but different decreasing slopes, and thus different maxima.

The curve with pm = 0.06% and pM = 4.32% is obviously identical in the two
Sects. 4.2.1 and 4.2.2 and the two Figs. 8 and 9. Very interestingly, with pM = 4.32%,
the curve with pm = 0.06% that is associated with bacteria is very close to the curve
with pm = 0 giving the highest value for dM . Indeed, at nh = 25 the maximum
dispersion is equal to dM = 1.17 with pm = 0.06% and to dM = 1.22 with pm = 0.
As previously, bacteria have optimised the maximum dispersion, and thus a maximum
capacity to retrieve the reading frame in genes.

4.2.3 Minimum andMaximumDispersions of the Evolutionary Bacterial Genetic
Code as a Function of Its Number of Codons

Figure 10 gives the dispersion of the evolutionary bacterial genetic code as a function of
its number n of codons, n ∈ {1, . . . , 64}, i.e. codons x with a probability ω(x) greater
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Fig. 9 Maximum dispersion dM of the current genetic code with 64 codons for three values of the minimum
probability pm , the maximum probability pM = 4.32% being that of the codon GCC in bacteria (see
Appendix Table 1). The x-axis shows the number nh of codonswith high frequency in the genetic code, nh ∈
{1, . . . , 64}, i.e. codons x with a probability at least 1

64 (ω(x) � 1
64 ). The y-axis shows the maximum

dispersion dM (see Proposition 4.3) of codon usage. Three curves corresponding to different values of the
codon of minimum probability are displayed: pm = 0.06% associated with the codon T AG in bacteria (see
Appendix Table 1) (curve with green circles) and 2 arbitrarily chosen surrounding values, namely pm = 0
(curve with violet disks) and pm = 0.5% (curve with blue stars) (Color figure online)

than 0. Since n varies from 1 to 64, and we must have 1
n � pM , the parameter pM

cannot stay equal to its original value of 4.32% from the bacterial genome with 64
codons: we normalise it by setting pM = 4.32

100 · 64
n . It then seems natural to similarly

scale the minimum probability pm instead of keeping it at the bacterial value 0.06%,
and we do so by setting pm = 0.06

100 · n
64 . Analogously, we make the parameter nh vary

with n, keeping the ratio nh
n as close as possible to the bacterial value 25

64 ≈ 0.39.

Formally, we set nh in {1, . . . , n} to be either
⌊
25n
64

⌋
or

⌈
25n
64

⌉
, depending on which

value is closer to 25n
64 (and discarding the value 0, i.e., setting nh = 1 when n = 1,

since as reported earlier we can always assume that nh � 1).
The dispersion function d (2.1) of codon usage ranges in the interval [0, 63

32 ] ≈
[0, 1.97] (Proposition 2.8). The minimum dispersion dm (curve with violet disks in
Fig. 10) has the maximum value 63

32 ≈ 1.97 at n = 1 and the minimum value 0 at n =
64. It decreases along the straight line with equation y = 2− x

32 (see Equation (4.4)).
The maximum dispersion dM (curve with green circles in Fig. 10) has the maximum
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Fig. 10 Dispersion of the evolutionary bacterial genetic code. From the bacterial codon usage (Appendix
Table 1), three parameters are used: the (normalised)minimum probability is pm = 0.06· 64n %, based on the
frequency of the codon of lowest occurrence in the bacterial genome, i.e. T AG; the (normalised) maximum
probability is pM = 4.32 · 64

n %, based on the frequency of the codon of highest occurrence, i.e. GCC ;

and the (normalised) number nh of codons with high frequency, i.e. with a probability at least 1
64 , defined

as the positive integer that is closest to 25 · n
64 . The x-axis shows the number n of codons in the genetic

code, n ∈ {1, . . . , 64}, i.e. the codons x with a probability greater than 0 (ω(x) > 0). The y-axis shows the
dispersion function d (2.1) of codon usage in the range [0, 63

32 ] ≈ [0, 1.97] (Proposition 2.8): the curve with
violet disks is theminimumdispersion dm (see Proposition 4.2), the curvewith green circles is themaximum
dispersion dM (see Proposition 4.3) and the curve with blue stars is the dispersion difference� = dM −dm
(Color figure online)

value 63
32 ≈ 1.97 at n = 1, as dm , and the minimum value 1.17195 at n = 64. It

decreases with n, approximately along the straight line with equation y = 1.948 −
0.012x (see Equation (4.6a), recalling that the values of pm and nh vary with n). Thus,
the dispersion difference � = dM − dm has the minimum value 0 at n = 1 and the
maximum value 1.17195 at n = 64.

From a biological point of view, this theoretical result quantifies and explains that
themore codons a code contains, the greater the dispersion and the greater the capacity
of genes to retrieve the reading frame, or equivalently the lower the loss of reading
frame retrieval (see the RFR function f (2.4) in Fig. 1).
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5 Conclusion

The reading frame retrieval (RFR) function f of genes expressed as a function of
the codon usage dispersion d (from the uniform codon distribution 1/64), identifies
a genome galaxy in bacteria (Fig. 1). A simple probabilistic model for ambiguous
sequences shows that theRFR function is ameasure of the gene reading frame retrieval.
Indeed, the RFR function increases with the ratio of ambiguous sequences and the
ratio of ambiguous sequences decreases when the codon usage dispersion increases.
This genome galaxy is studied by expressing the RFR function f according to the
Y Z -content (GC-, AG- and GT -content) of codon in bacteria (Fig. 4). The classical
GC-content is the best parameter for characterizing the upper arm, which is related to
genomes with a low GC-content, and the lower arm, which is related to genomes with
a high GC-content. The galaxy center has a GC-content around 0.5 (Fig. 4A). Then,
these results are confirmed by expressing the GC-content of codon as a function of
the codon usage dispersion (Fig. 5A). Finally, the bacterial genome galaxy is better
described with the GC3-content in the 3rd codon site compared to the GC1-content
and GC2-content in the 1st and 2nd codons sites, respectively (Fig. 7C).

Whereas the codon usage is used extensively by biologists, its dispersion is surpris-
ingly little known and unused, even though it is a classical parameter in basic statistics.
With this inmind, and also to study the genome galaxy,we have developed here amath-
ematical theory of codon usage dispersion by deriving several formulæ. It shows three
important parameters that should be considered by biologists: the codon of highest fre-
quency (i.e. the parameter pM ), the codon of lowest frequency (i.e. the parameter pm)
and the number of codons with high frequency, i.e. greater than 100/64 = 1.5625%
(i.e. the parameter nh). The derived formulæ of dispersion can be easily extended to
any weighted codes over a finite alphabet, e.g. the amino acid alphabet. The theory
developed shows that bacteria have optimised the codon dispersion to be maximal,
and thus a maximum capacity to retrieve the reading frame in genes, in two ways: (i)
the existence of stop codons with frequencies pm ≈ 0, e.g. the bacterial codon T AG
of lowest frequency pm = 0.06% (Fig. 9); (ii) the number nh of codons with high
frequency, e.g. nh = 25 is almost optimal with the bacterial codon GCC of highest
occurrence pM = 4.32% (Fig. 8).

Appendix A: Codon Usage of Bacterial Kingdom

See Table 1.
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Table 1 Codon usage
of 34,020,997 genes of 8345
bacterial genomes
(11,087,876,805 codons)
obtained from the codon
statistics database (CSD)
(Subramanian et al. 2022)

AAA 2.37 C AA 1.20 G AA 2.91 T AA 0.12

AAC 1.80 C AC 1.27 G AC 3.42 T AC 1.56

AAG 2.00 C AG 2.16 G AG 3.22 T AG 0.06

AAT 1.64 C AT 0.78 G AT 2.25 T AT 1.35

AC A 0.93 CC A 0.63 GC A 1.43 T C A 0.64

ACC 2.56 CCC 1.39 GCC 4.32 T CC 1.25

ACG 1.51 CCG 2.14 GCG 3.22 T CG 1.23

ACT 0.76 CCT 0.67 GCT 1.30 T CT 0.67

AG A 0.54 CG A 0.43 GG A 1.39 T G A 0.15

AGC 1.28 CGC 2.26 GGC 3.63 T GC 0.53

AGG 0.38 CGG 1.64 GGG 1.43 T GG 1.31

AGT 0.69 CGT 0.80 GGT 1.54 T GT 0.29

AT A 0.82 CT A 0.45 GT A 1.05 T T A 1.25

AT C 2.76 CT C 2.23 GT C 2.66 T T C 2.11

AT G 2.15 CT G 3.86 GT G 2.66 T T G 1.21

AT T 1.91 CT T 1.01 GT T 1.20 T T T 1.61

Appendix B: Proof of Proposition 4.2

We start by defining a weighted trinucleotide code W = (ω1, . . . , ω64) that satisfies
Conditions (1)–(3) by setting ωi = 1

n if 1 � i � n, and ωi = 0 if nh + 1 � i � 64.
Then W readily satisfies Conditions (1)–(3). Moreover, d(W) = 2 − n

32 . Indeed,
if i ∈ {1, . . . , n} then ωi = 1

n � 1
64 , so

∑n
i=1

∣∣ωi − 1
64

∣∣ = 1 − n
64 ; moreover

if i ∈ {n + 1, . . . , 64} then ωi = 0 so
∑64

i=n+1

∣∣ωi − 1
64

∣∣ = 64−n
64 = 1 − n

64 .
It remains to show that if a weighted trinucleotide codeW ′ = (ω′

1, . . . , ω
′
64) satis-

fiesConditions (1)–(3), thend(W ′) � d(W). First, note that ifn = 64, thend(W) = 0,
which is trivially minimum. So we now assume that n � 63, and we proceed as fol-
lows. Since the function dm is the minimization of a convex function over a convex
domain, it suffices to prove that d(W) is a local minimum, that is, if a weighted trin-
ucleotide code W ′ still satisfying Conditions (1)–(3) is produced by small enough
modifications of the values ω1, . . . , ω64, then d(W ′) � d(W) = 2 − n

32 .
Fix ε > 0 small enough that 1

64 + ε < 1
n , which is possible since n � 63 by

our assumption. Now, if
∣∣ω′

i − ωi
∣∣ � ε for i ∈ {1, . . . , 64}, then since W ′ satisfies

Condition (1) we have ω′
i � ωi = 1

n > 1
64 if 1 � i � nh , and ω′

i � ωi − ε = 1
n − ε >

1
64 if nh + 1 � i � n. So

∣∣ω′
i − 1

64

∣∣ = ω′
i − 1

64 for i ∈ {1, . . . , n}. Consequently,
n∑

i=1

∣∣∣∣ω
′
i − 1

64

∣∣∣∣ =
n∑

i=1

(
ω′

i − 1

n

)
+

n∑

i=1

(
1

n
− 1

64

)
. (B.1)
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As a result, using that ω′
i = 0 = ωi if n + 1 � i � 64 since W ′ must satisfy

Condition (3), we infer from (B.1) that

d(W ′) =
n∑

i=1

(
ω′

i − 1

n

)
+ d(W)

= d(W) − 1 +
n∑

i=1

ω′
i

= d(W).

This concludes the proof. 
�

Appendix C: Proof of Proposition 4.3

Suppose first that (4.5) holds. Let z0 = 1−n·pm
nh

, and note that z0 � 0 by (4.1). We
set

∀i ∈ {1, . . . , 64}, ωi =

⎧
⎪⎨

⎪⎩

pm + z0 if 1 � i � nh,

pm if nh + 1 � i � n,

0 otherwise.

Then W = (ω1, . . . , ω64) defines a weighted trinucleotide code, since it consists
of non-negative real numbers summing to 1. This code W does satisfy the required
properties. The only condition that could be violated is (1). However, (n−nh)pm

nh
�

1
nh

− pM by (4.5), so pm + z0 = 1−(n−nh)·pm
nh

� pM on the one hand, and (n−nh)pm
nh

�
1

nh
− 1

n by (4.1) so pm + z0 � 1
n on the other hand. Consequently, dM � d(W).

Moreover, d(W) is equal to the right side of (4.6a) if pm � 1
64 , and to the right

side of (4.6b) otherwise. To see this, we define d1 = ∑nh
i=1

∣∣ωi − 1
64

∣∣ and d2 =∑n
i=nh+1

∣∣ωi − 1
64

∣∣. If i ∈ {1, . . . , nh}, then ωi = pm + z0 � 1
n � 1

64 so

d1 = nh ·
(

pm + z0 − 1

64

)
= 1 − (n − nh) · pm − nh

64

= 1 + nh ·
(

pm − 1

64

)
− n · pm; (C.1)

while if i ∈ {nh + 1, . . . , n}, then ωi = pm , so if pm � 1
64 ,

d2 = (n − nh) ·
(

1

64
− pm

)
= n

64
+ nh ·

(
pm − 1

64

)
− n · pm, (C.2)
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and if pm > 1
64 ,

d2 = (n − nh) ·
(

pm − 1

64

)
= − n

64
− nh ·

(
pm − 1

64

)
+ n · pm; (C.3)

finally, if i ∈ {n + 1, . . . , 64}, then ωi = 0 and hence
∑64

i=n+1

∣∣ωi − 1
64

∣∣ = 1 − n
64 .

Summing this with (C.1) and either (C.2) or (C.3) yields (4.6a) or (4.6b), respectively.
It remains to prove that if a weighted trinucleotide code W ′ = (ω′

1, . . . , ω
′
64)

satisfies Conditions (1)–(3), then d(W ′) � d(W). By Condition (3), it suffices to
prove that

∑n
i=1

∣∣ 1
64 − ω′

i

∣∣ �
∑n

i=1

∣∣ 1
64 − ωi

∣∣. For convenience we set S1 = ∑nh
i=1 ωi

and S2 = ∑n
i=nh+1 ωi . We similarly define S′

1, S′
2 as well as d ′

1 and d ′
2 with respect

toW ′ instead ofW . Our goal is thus to show that d ′
1+d ′

2 � d1+d2. Note that S1+S2 =
1 = S′

1 + S′
2.

As ω′
i � 1

64 for i ∈ {1, . . . , nh}, we deduce that d ′
1 = S′

1 − nh
64 = 1− S′

2 − nh
64 , and

hence (C.1) implies that d ′
1 − d1 = (n − nh) · pm − S′

2.
To express d ′

2, let

I +
2 =

{
i ∈ {nh + 1, . . . , n} : ω′

i >
1

64

}
,

and I −
2 = {nh + 1, . . . , n} \ I +

2 , thus
∣∣I +
2

∣∣ = (n − nh) − ∣∣I −
2

∣∣ and
∑

i∈I +
2

ω′
i =

S′
2 −∑

i∈I −
2

ω′
i . Consequently,

d ′
2 =

n∑

i=nh+1

∣∣∣∣ω
′
i − 1

64

∣∣∣∣ =
∑

i∈I +
2

(
ω′

i − 1

64

)
+

∑

i∈I −
2

(
1

64
− ω′

i

)

= − 1

64
· (∣∣I +

2

∣∣− ∣∣I −
2

∣∣)+
∑

i∈I +
2

ω′
i −

∑

i∈I −
2

ω′
i

= − 1

64
· ((n − nh) − 2

∣∣I −
2

∣∣)+ S′
2 − 2

∑

i∈I −
2

ω′
i

� − 1

64
· ((n − nh) − 2

∣∣I −
2

∣∣)+ S′
2 − 2

∑

i∈I −
2

pm

= 2
∣∣I −
2

∣∣
(

1

64
− pm

)
+ S′

2 − n − nh

64
,

where the inequality holds becauseω′
i � pm for each i ∈ I −

2 . Furthermore, if pm > 1
64 ,

then d2 = (n − nh) · (pm − 1
64 ), and hence

d ′
1 + d ′

2 − (d1 + d2) = d ′
1 − d1 + d ′

2 − d2

= 2
∣∣I −
2

∣∣
(

1

64
− pm

)
� 0,
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since pm > 1
64 .

Finally, if pm � 1
64 , then d2 = (n − nh) · ( 1

64 − pm), and therefore,

d ′
1 + d ′

2 − (d1 + d2) = d ′
1 − d1 + d ′

2 − d2

� 2(n − nh) ·
(

pm − 1

64

)
+ 2

∣∣I −
2

∣∣ ·
(

1

64
− pm

)

= 2

(
pm − 1

64

)
· ((n − nh) − ∣∣I −

2

∣∣) .

It follows that d ′
1 + d ′

2 � d1 + d2, because pm − 1
64 � 0 on the one hand, and (n −

nh) − ∣∣I −
2

∣∣ � 0 on the other hand since I −
2 is a subset of {nh + 1, . . . , n}.

Suppose now that (4.5) does not hold, so

nh · pM + (n − nh) · pm < 1. (C.4)

This implies that pm < 1
n . As in the statement of the proposition, we set ε = 1− (nh ·

pM + (n − nh) · pm) and t = ε
1/n−pm

, so ε and t are positive; and we also set t0 = t�
and z1 = ε − t0 · ( 1n − pm), so z1 � 0. We note that nh + t0 + 1 � n, for otherwise we
infer that 1

n � pM , contrary to (4.1). Indeed, if nh + t0 � n, then nh + t � n, that is,

nh + 1 − nh pM − npm + nh pm
1
n − pm

� n

so

nh

n
− nh pm + 1 − nh pM − npm + nh pm � 1 − npm,

which yields that nh
n − nh pM � 0 and hence 1

n � pM since nh > 0.
Then setting

∀i ∈ {1, . . . , 64}, ωi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pM if 1 � i � nh,
1
n if nh + 1 � i � nh + t0,

pm + z1 if i = nh + t0 + 1,

pm if nh + t0 + 2 � i � n,

0 otherwise,

defines a weighted trinucleotide code, since the sequenceW = (ω1, . . . , ω64) consists
of non-negative real numbers summing to 1. Conditions (1)–(3) can be violated only
if pm + z1 > 1

n . However, since t0 = t� > t − 1,

pm + z1 = pm + ε − t0

(
1

n
− pm

)
< ε − t

(
1

n
− pm

)
+ 1

n
= 1

n
. (C.5)
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Moreover, if pm � 1
64 then d(W) equals the right side of (4.7a) or of (4.7b),

depending on whether pm + z1 � 1
64 or not, while if pm > 1

64 then d(W) equals the
right side of (4.7c). This follows from the definitions by a direct computation, recalling
that nh pM = 1 − (n − nh)pm − ε. Indeed, if i ∈ {1, . . . , nh + t0} then

∣∣ωi − 1
64

∣∣ =
ωi − 1

64 and hence

nh+t0∑

i=1

∣∣∣∣ωi − 1

64

∣∣∣∣ =
(

pM − 1

64

)
· nh +

(
1

n
− 1

64

)
· t0. (C.6)

If pm � 1
64 , then for i ∈ {nh + t0 + 2, . . . , 64} we have ∣∣ωi − 1

64

∣∣ = 1
64 − ωi , and

hence

64∑

i=nh+t0+2

∣∣∣∣ωi − 1

64

∣∣∣∣ = (nh + t0 + 1 − n)

(
pm − 1

64

)
+ 1 − n

64
, (C.7)

while if pm > 1
64 , then

∣∣ωi − 1
64

∣∣ = pm − 1
64 for i ∈ {nh + t0 + 2, · · · , n},

and
∣∣ωi − 1

64

∣∣ = 1
64 for i ∈ {n + 1, . . . , 64}, so that

64∑

i=nh+t0+2

∣∣∣∣ωi − 1

64

∣∣∣∣ = (nh + t0 + 1 − n)

(
1

64
− pm

)
+ 1 − n

64
. (C.8)

Now if pm + z1 > 1
64 then

∣∣∣∣ωnh+t0+1 − 1

64

∣∣∣∣ = (nh + t0 + 1 − n) · pm − nh · pM − t0
n

+ 1 − 1

64
, (C.9)

so the sum of (C.6), (C.7) and (C.9) shows that d(W) equals the right side of (4.7b)
if pm � 1

64 , while the sum of (C.6), (C.8) and (C.9) shows that d(W) equals the
right side of (4.7c) if pm > 1

64 . Moreover, if on the contrary pm + z1 � 1
64 , and in

particular pm � 1
64 as z1 � 0, then

∣∣∣∣ωnh+t0+1 − 1

64

∣∣∣∣ = −(nh + t0 + 1 − n) · pm + nh · pM + t0
n

− 1 + 1

64
,

(C.10)

so the sum of (C.6), (C.7) and (C.10) shows that d(W) equals the right side of (4.7a).
We now prove that W has the largest dispersion among all weighted trinucleotide

codes satisfying Conditions (1)–(3). To this end, let W ′ = (ω′
1, . . . , ω

′
64) be such a

code, that moreover maximises the dispersion over all weighted trinucleotide codes
satisfying Conditions (1)–(3).

We first show that we can assume that ω′
i = pM for each i ∈ {1, . . . , nh}. Indeed,

suppose that there exists i ∈ {1, . . . , nh} such that ω′
i = pM − δ for some positive
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real δ. Becauseω′
k � pM = ωk for any k ∈ {1, . . . , nh} and∑n

i=1 ω′
i = 1 = ∑n

i=1 ωi ,
we infer the existence of a set J ⊆ {nh + 1, . . . , n} such that

• ∑
j∈J ω′

j � δ +∑
j∈J ω j ; and

• ω′
j > ω j for each j ∈ J .

Since pm � ω j < ω′
j � 1

n for j ∈ J , we can define a weighted trinu-
cleotide code Z = (ζ1, . . . , ζ64) satisfying Conditions (1)–(3) by setting ζi = pM ,
next ζk = ω′

k if k /∈ J ∪ {i}, and finally defining ζ j for j ∈ J such that ζ j � ω′
j

and
∑

j∈J ζ j = (∑
j∈J ω′

j

) − δ. Now,
∑

k /∈J

∣∣ζk − 1
64

∣∣ = δ + ∑
k /∈J

∣∣ω′
k − 1

64

∣∣

and
∑

j∈J

∣∣ζ j − 1
64

∣∣ � −δ + ∑
j∈J

∣∣∣ω′
j − 1

64

∣∣∣, so that d(Z) is at least, and hence

equal to, d(W ′). Consequently, we can now assume that ω′
i = pM for i ∈ {1, . . . , nh}.

We similarly show that we can assume that ω′
i = 1

n if nh +1 � i � nh + t0. Indeed,
suppose that there exists i ∈ {nh+1, . . . , nh+t0} such thatω′

i = 1
n −δ for somepositive

real δ. Because ω′
k � 1

n = ωk for k ∈ {nh + 1, . . . , nh + t0}, and ω′
k = pM = ωk

if 1 � k � nh , we infer the existence of a set J ⊆ {nh + t0 + 1, . . . , n} such that

• ∑
j∈J ω′

j � δ +∑
j∈J ω j ; and

• ω′
j > ω j for each j ∈ J .

As before, we can then define a weighted trinucleotide code Z = (ζ1, . . . , ζ64) sat-
isfying Conditions (1)–(3) and with dispersion at least d(W ′) by setting ζi = 1

n ,
next ζk = ω′

k if k /∈ J ∪ {i}, and finally defining ζ j for j ∈ J such that ζ j � ω′
j

and
∑

j∈J ζ j = (∑
j∈J ω′

j

) − δ. In total, we can thus assume that ω′
i = ωi

if 1 � i � nh + t0.
We now conclude that d(W ′) = d(W). This is true if ω′

k = ωk for k ∈ {nh + t0 +
2, . . . , n}, since thenW andW ′ must be equal as both sum to 1. Recalling that ω′

k �
pm = ωk for each k ∈ {nh+t0+2, . . . , n}, we can thus suppose that∑n

j=nh+t0+2 ω′
k =

δ +∑n
j=nh+t0+2 ωk for some positive real δ. Because, in addition ω′

k = ωk if 1 � k �
nh + t0, we infer that ω′

nh+t0+1 = ωnh+t0+1 − δ. Therefore, d(W ′) is most, and hence
equal to, d(W). We have proved that W indeed has the largest dispersion among all
weighted trinucleotide codes satisfying Conditions (1)–(3). This concludes the proof.


�

Appendix D: Case with a Given Number of Codons of High Frequency

One could want to insist that the number of codons of high frequency is precisely nh

rather than at least nh , thereby replacing Condition (2) from Sect. 4.1, namely

(2) for every i ∈ {nh + 1, . . . , n}, we have pm � ωi � 1
n ,

by the following condition

(2’) for every i ∈ {nh + 1, . . . , n}, we have pm � ωi < 1
n .

The extremal values proved in Propositions 4.2 and 4.3 are left unchanged under our
assumption that pm < 1

n < pM (for otherwise, as reported above, all n occurring
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codons must have frequency 1
n ). This clearly holds for (4.6a) and (4.6b), since the

weighted trinucleotide code provided in the proof already satisfies Condition (2’),
as pm < 1

n .
The other weighted trinucleotide codes provided in the proofs of Propositions 4.2

and 4.3 can be slightly modified to satisfy Condition (2’) instead of Condition (2), and
have dispersion arbitrarily close to the original one. Indeed, for Proposition 4.2, we
can choose δ > 0 such that fm := 1

n − δ � pm and fM := 1
n + n−nh

nh
δ � pM . We then

change the value of ωi to fM if 1 � i � nh , and to fm if nh + 1 � i � n. Note that
the total sum remains 1, as

(n − nh) fm + nh fM = n − nh

n
− (n − nh)δ + nh

n
+ (n − nh)δ = 1.

Furthermore,
∣∣ fM − 1

64

∣∣ = ∣∣ 1
n − 1

64

∣∣+ n−nh
nh

δ and
∣∣ fm − 1

64

∣∣ �
∣∣ 1

n − 1
64

∣∣+ δ. There-
fore, the obtained weighted trinucleotide code has dispersion at most 2− n

32 + 2(n −
nh)δ, which can be made arbitrarily close to 2− n

32 by choosing δ arbitrarily close to 0
(and positive). As a side remark, if n � 63 then δ can also be chosen small enough
that fm � 1

64 , and then the dispersion of the newly defined weighted trinucleotide
code is again exactly 2 − n

32 . Indeed, we have
∣∣ fm − 1

64

∣∣ = ∣∣ 1
n − 64

∣∣ − δ, so that

(n − nh)

∣∣∣∣ fm − 1

64

∣∣∣∣+ nh

∣∣∣∣ fM − 1

64

∣∣∣∣ = (n − nh)

∣∣∣∣
1

n
− 1

64

∣∣∣∣+ nh

∣∣∣∣
1

n
− 1

64

∣∣∣∣ .

For the weighted trinucleotide code W = (ω1, . . . , ω64) provided to estab-
lish (4.7a)–(4.7c), first recall that pm + z1 < 1

n by (C.5), and hence W satisfies
Condition (2’) unless t0 � 1, in which case the values ωnh+1, . . . , ωnh+t0 are all equal
to 1

n . As already observed in the proof of Proposition 4.3, it holds that nh + t0 � n −1.
We can choose δ > 0 such that fm := 1

n − δ > pm and pm + z1 + t0δ < 1
n , recalling

that pm + z1 < 1
n . If pm + z1 < 1

64 , then up to further reducing the value of δ, we
can moreover suppose that pm + z1 + t0δ < 1

64 . We now change the value of ωi to fm

for i ∈ {nh + 1, . . . , nh + t0}, and to pm + z1 + t0δ if i = nh + t0 + 1. We note that
the obtained code satisfies Condition (2’) as well as Conditions (1) and (3), and one
sees similarly as before that its dispersion differs from that of the original code by at
most 2t0δ, which can be made arbitrarily close to 0 by choosing δ arbitrarily close to 0
(and positive). As a side remark, if pm + z1 � 1

64 , then the dispersion of the newly
defined code remains unchanged, thus attaining the right side of (4.7b).
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