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H I G H L I G H T S

� Five new hierarchically ordered classes of trinucleotide codes are introduced.
� An easy test-criterion for circularity of codes is developed.
� The maximal number of amino acids encoded by circular codes is investigated.
� The circularity of the RNY-primeval code and related codes is shown.
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a b s t r a c t

Circular codes are putative remnants of primeval comma-free codes and are potentially involved in
detecting and maintaining the normal reading frame in protein coding sequences. In Michel and Pirillo
(2013a) it was shown by computer algorithm that no maximal trinucleotide circular code can encode
more than 18 different amino acids under the standard version of the genetic code. For comma-free
codes the maximum is even less, namely 13 (Michel, 2014). The main purpose of this paper is to
investigate these facts from a mathematical point of view and to show why the codes with the best-
known error detecting properties are limited in the number of amino acids they can encode. We
introduce five hierarchically ordered classes of trinucleotide codes including the well-known comma-
free and circular codes and prove combinatorically that it is impossible to encode all amino acids using
codes from four out of the five classes that have the strongest error detecting properties. However, it is
possible to encode all 20 amino acids using codes from the largest class with the weakest properties.
Additionally, we develop a handy criterion for circularity. As an application, it is shown that all codes
from a special class of trinucleotide codes which includes the RNY-primeval code (Shepherd, 1986) are
automatically circular. We also list which amino acids these codes encode.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In 1953 Crick and Watson published their pioneering discovery
of the right-handed double-helix structure of DNA. Their article ‘A
Structure for Deoxyribose Nucleic Acid’ (Watson and Crick, 1953)
turned biology upside down and since then many attempts have
been made to model the assignment of codons to amino acids so
as to explain the chemical and biological symmetries of the
genetic code (see for example Gonzalez, 2008; Gonzalez et al.,
2008, 2011; Jestin, 2006; Koch and Lehmann, 1997; Negadi, 2009;
Rumer, 1969; Sciarrino, 2003). It was Gamow who first initiated in

his letter to Crick and Watson (1953) a search for formal rules
describing the genetic code (Nanjundiah, 2004).

It is well known that the genetic code is written with words of
three letters called codons which are built on an alphabet of four
letters, nucleotide bases Uracil (Thymine), Cytosin, Adenine, and
Guanine, in short UðTÞ;C;A;G. One of the first natural ideas is to
find a proper classification of the elementary words of the genetic
code, the codons, explaining the degeneracy in their assignment to
amino acids. In the late 1950s biologists became aware of the so-
called frame-shift problem: a sequence of codons can be translated
only in a right frame into the right amino acids. For this problem
Crick suggested a solution that was received enthusiastically. He
assumed that the adaptor molecules might exist for only a subset
of all possible codons, the remaining codons are the ‘nonsense
codons’ (Hayes, 1998). The codes in which all out-of-frame triplets
are nonsense and which can be meaningfully read in only one
frame are called comma-free codes. However, there is still no
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experimental evidence for the existence of comma-free codes in
nature. Golomb and collaborators showed that there are 408
maximal comma-free codes and gave a method to find them
(Golomb et al., 1958, 1958). Later a less restrictive family of codes
called circular codes was introduced and discovered (see, for
instance, Arquès and Michel, 1996; Michel et al., 2008, 2008,
2012; Michel and Pirillo, 2010, 2013a, 2013b; Michel, 2012,
2014). The circular codes have the property that only some out-
of-frame triplets are nonsense, which still suffices to recognize an
out-of-frame shift. Thus, the comma-free and circular codes are
error-detecting codes for the genetic information. In contrast to
comma-free codes, circular codes were indeed found on large gene
populations of eukaryotes and prokaryotes (Arquès and Michel,
1996). This has initiated intensive studies, mostly experimental,
since it seems that circular codes are indeed potentially involved
in maintaining the normal reading frame.

The paper is structured as follows. In Section 2 of the present
paper we will discuss the basic definitions. In Section 3.3 we
introduce five hierarchically ordered classes of trinucleotide codes.
Among them comma-free codes build the smallest class with the
most restrictive properties. The next class with less restrictive
properties are the circular codes, followed by the trinucleotide
3-circular, the 2-circular and the 1-circular codes introduced in the
present paper. Numerous examples will be given to show that all
these classes are different. The results obtained in Section 3.3
together with the discussion from Section 4 prove that all these
classes are ordered by proper inclusion.

In Section 4 we will give a useful criterion to test a given
trinucleotide code for its circularity and afterwards discuss the
question how many different amino acids can be coded by codes
with properties introduced in Section 3.3. It is known that the
maximal number of amino acids that can be encoded by a circular
code under the standard version of the genetic code is 18 (Michel
and Pirillo, 2013a). This result was obtained by an intensive
computer algorithm listing all possible maximal trinucleotide
circular codes (Herrmann et al., 2013). Among 12,964,440 possible
maximal trinucleotide circular codes there are only 10 which code
18 amino acids (see Michel and Pirillo, 2013a). We will show in
Section 4 of this paper that it is theoretically impossible under the
standard version of the genetic code to encode all 20 amino acids
having a comma-free, a trinucleotide circular or even a 2-circular
code but it is possible to encode all 20 amino acids using
trinucleotide 1-circular codes. It will also be shown in Section 4
that for some special class of trinucleotide codes which include the
so-called RNY-primeval code (see Shepherd, 1986) the circularity
is automatically given. Section 5 contains the conclusions.

2. Definitions

In this section we recall the basic notions and definitions from
Michel and Pirillo (2013a) and reformulate them in a way which is
suitable for our considerations. Let us denote the nucleotide bases
alphabet as

B≔fUðTÞ;C;A;Gg

where U stands for Uracil, C stands for Cytosine, A stands for
Adenine and G stands for Guanine. Given a codon x¼N1N2N3AB3

we let

α0ðxÞ ¼ idðxÞ ¼N1N2N3; α1ðxÞ ¼N2N3N1; and α2ðxÞ ¼N3N1N2

be the codons obtained from x by a shift of 0,1, and 2 positions,
respectively. We will say that two codons x1; x2AB3 are cyclically
equivalent if x1Afα0ðx2Þ;α1ðx2Þ;α2ðx2Þg. It is easy to see that the
relation defined above is an equivalence relation on the set of

codons B3, i.e. it is reflexive, symmetric, and transitive. For
instance, ATC is equivalent to TCA and also to CAT.

Geometrically the equivalence relation means that two equiva-
lent codons cannot be distinguished when read on a circle, i.e. one
codon can be obtained from the other by a cyclic permutation of
the defining bases, a rotation of the circle (Fig. 1).

Let us consider the equivalence classes (conjugacy classes) of
codons with respect to the cyclical equivalence. Clearly, for four
codons AAA, CCC, GGG, UUU the corresponding equivalence classes
contain only one element. The remaining 20 equivalence classes
contain three elements each and, thus, are complete classes
(compare for example Pearson, 2003).

Table 1 lists all the complete conjugacy classes (see also Michel
et al., 2012) and the corresponding amino acids they code for.

It will be of interest to us in the sequel how the amino acids are
distributed among the equivalence classes of codons and vice
versa. Table 2 shows which amino acids are coded by the complete
conjugacy classes. In particular, it can be seen from Table 2 that
codons from the same equivalence class never code for the same
amino acid. Hence each complete equivalence class of codons
codes for three different amino acids or the stop signal.

Table 3 combines all the information on the codons with
respect to their conjugacy class and the amino acids they code
for. In particular it shows in which conjugacy classes a given amino
acid participates. As mentioned above every complete equivalence
class codes for three different amino acids (or the stop signal),
hence the number of equivalence classes that code for a particular
amino acid equals the degeneracy of this amino acid. This fact can
already be interpreted as a kind of coding: a coding sequence of
codons can be uniquely reconstructed by its corresponding
sequence of amino acids and the sequence of equivalence class
numbers.

Finally, we give a technical definition that will be helpful to
determine the structure of certain codes in the next section.

Definition 2.1. Let XDB3. We will denote by πi (i¼ 1;2;3) the
map

πi : B3-B
which assigns to each codon xAB3 its ith coordinate (projection
onto the ith coordinate). πiðXÞDB denotes the set of all ith
coordinates of the elements of X.

Fig. 1. The codons N1N2N3, N2N3N1, and N3N1N2 are cyclically equivalent for any
bases N1 ;N2 ;N3AB.

Table 1
The table of equivalence (conjugacy) classes of
codons containing three elements.

D1 ¼ fAAC; ACA; CAAg D2 ¼ fAAG; AGA; GAAg
D3 ¼ fAAT ; ATA; TAAg D4 ¼ fACC; CCA; CACg
D5 ¼ fACG; CGA; GACg D6 ¼ fACT ; CTA; TACg
D7 ¼ fAGC; GCA; CAGg D8 ¼ fAGG; GGA; GAGg
D9 ¼ fAGT ; GTA; TAGg D10 ¼ fATC; TCA; CATg
D11 ¼ fATG; TGA; GATg D12 ¼ fATT ; TTA; TATg
D13 ¼ fCCG; CGC; GCCg D14 ¼ fCCT ; CTC; TCCg
D15 ¼ fCGG; GGC; GCGg D16 ¼ fCGT ; GTC; TCGg
D17 ¼ fCTG; TGC; GCTg D18 ¼ fCTT ; TTC; TCTg
D19 ¼ fGGT ; GTG; TGGg D20 ¼ fGTT ; TTG; TGTg
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Note that for any subset XDB3 the sets π1ðXÞ, π2ðXÞ and π3ðXÞ
can contain at most four elements. For instance, π2ðTGAÞ ¼ G,
π1ðCCGÞ ¼ C and π3ðTAGÞ ¼ G as well as

π1ðfCCG; TGA;GAA;GTC; TCTgÞ ¼ fC;G; Tg:

3. Trinucleotide codes

Based on and motivated by Michel et al. (2012) we will consider
various classes of trinucleotide codes in this section. A trinucleotide
code is a subset X of the set B3 of all codons, e.g. B3 itself is a
trinucleotide code but also just a single codon fN1N2N3g. It has
been observed that in the coding sequences certain codons are
used more often than others. This seems to indicate that nature
has built in some error detecting and probably also correcting
mechanism in the sense that subcodes of B3 that allow the
detection of frame shifts are used more frequently. Here we
discuss a hierarchy of such codes including the classical comma-
free codes and circular codes.

3.1. Trinucleotide n-circular codes

We begin with the definition of trinucleotide n-circular codes
for natural numbers nAN.

Definition 3.1. Let nAN and XDB3 be a trinucleotide code. We
say that X is a trinucleotide n-circular code if for any concatenation
x1⋯xm of mrn codons from X, there is only one partition into
codons from X when read on a circle, i.e. the next letter after the
last letter being the first letter.

For instance the sequence ACTGTAAAC would read on a circle as
the infinite sequence

ACTGTAAACACTGTAAACACTGTAAAC⋯⋯:

Before we give several examples we would like to state an easy
lemma.

Lemma 3.2. The following holds for nAN:

(a) If X is a trinucleotide n-circular code, then X is also m-circular for
all mrn.

(b) A trinucleotide n-circular code can contain at most one element
from each complete equivalence class and cannot contain the
codons AAA, CCC, GGG, TTT.

(c) A trinucleotide code XDB3 is1-circular if and only if X contains
at most one codon from each complete conjugacy class and none
of the codons AAA, CCC, GGG, TTT.

The following examples show that the classes of n-circular
codes build a proper hierarchy for n¼ 1;2;3;4. It will be shown in
Theorem 4.3 that for nZ5 the class of trinucleotide n-circular
codes coincides with the class of trinucleotide 4-circular codes.

Example 3.3. Let us consider the following examples:

� The set of codons

X≔fTGG;GTGg
is not a trinucleotide 1-circular code since it contains two
codons from the conjugacy class 19.

� The set of codons

X≔fTGG;CTG;GGC; TGTg
is a trinucleotide 1-circular but not a trinucleotide 2-circular code:
It contains only codons from different conjugacy classes while for
example the word w¼TGGCTG has two factorizations into words
from X since GGC and TGT are also in the code.

� The set of codons

X≔fACG;GTA;CGT ;CGG; TACg
is a trinucleotide 2-circular but not a trinucleotide 3-
circular code.
The word w¼ACGGTACGT has two factorizations on a circle

ACGjGTAjCGT and CGGjTACjGTA:
At the same time it is easy to see that the concatenation of any
two codons from X has a unique factorization over X.

Table 2
The table of amino acids encoded by the equivalence (conjugacy) classes of codons containing three elements, AðDiÞ denotes the set of amino
acids encoded by codons from Di.

AðD1Þ ¼ fasparagine; glutamine; threonineg AðD2Þ ¼ farginine; glutamate; lysineg
AðD3Þ ¼ fasparagine; isoleucine; stopg AðD4Þ ¼ fhistidine; proline; threonineg
AðD5Þ ¼ farginine; aspartate; threonineg AðD6Þ ¼ fleucine; threonine; tyrosineg
AðD7Þ ¼ falanine; glutamine; serineg AðD8Þ ¼ fglutamate; glycine; arginineg
AðD9Þ ¼ fserine; valine; stopg AðD10Þ ¼ fhistidine; isoleucine; serineg
AðD11Þ ¼ faspartate;methionine; stopg AðD12Þ ¼ fisoleucine; leucine; tyrosineg
AðD13Þ ¼ falanine; arginine; prolineg AðD14Þ ¼ fleucine; proline; serineg
AðD15Þ ¼ falanine; arginine; glycineg AðD16Þ ¼ farginine; serine; valineg
AðD17Þ ¼ falanine; cysteine; leucineg AðD18Þ ¼ fleucine; phenylalanine; serineg
AðD19Þ ¼ fglycine; tryptophan; valineg AðD20Þ ¼ fcysteine; leucine; valineg

Table 3
The standard nuclear correspondence between codons and amino acids. The index i
on the top of the codons assigns the equivalence class Di (compare Table 1).

Amino acid 50-30 Codon sequence

Alanine GCT17, GCC13, GCA7, GCG15

Arginine CGT16, CGC13, CGA5, CGG15, AGA2, AGG8

Asparagine AAT3, AAC1

Aspartate GAT11, GAC5

Cysteine TGT20, TGC17

Glutamate GAA2, GAG8

Glutamine CAA1, CAG7

Glycine GGT19, GGC15, GGA8, GGG
Histidine CAT10, CAC4

Isoleucine ATT12, ATC10, ATA3

Leucine TTA12, TTG20, CTT18, CTC14, CTA6, CTG17

Lysine AAA, AAG2

Methionine ATG11

Phenylalanine TTT, TTC18

Proline CCT14, CCC, CCA4, CCG13

Serine TCT18, TCC14, TCA10, TCG16, AGT9, AGC7

Threonine ACT6, ACC4, ACA1, ACG5

Tryptophan TGG19

Tyrosine TAT12, TAC6

Valine GTT20, GTC16, GTA9, GTG19
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� The set of codons

X ¼ fCGT ;ACG; TAC;GTAg
is a trinucleotide 3-circular but not a trinucleotide 4-
circular code.
The word w¼CGTACGTACGTA has two factorizations on a circle

CGTjACGjTACjGTA and GTAjCGT jACGjTAC:
Thus X is not 4-circular. However, X is clearly 1-circular and at
the same time the concatenation of any two different codons
from X either do not contain codons from X at all in shift one or
two, like in

CGTTAC; ACGGTA; TACCGT ; GTAACG

or they contain subcodons (three adjacent letters from B) from
X in shift one or two but do not have a second factorization
over X which can be easily checked for the remaining pairs

CGTACG; CGTGTA; ACGCGT ; ACGTAC; TACACG;

TACGTA; GTACGT ; GTATAC

The concatenations of three different codons from X on a circle
always contain a subcodon that has the same nucleotide basis
in two successive positions. However, every codon from X
contains a nucleotide basis at most one time. This shows that
every concatenation of three codons from X has a unique
decomposition over X on a circle.

The above examples prove that the notions of trinucleotide n-
circularity differ for n¼ 1;2;3;4. As mentioned above we will show in
Section 4 (see Theorem 4.3) that trinucleotide 4-circularity coincides
with the traditional notion of trinucleotide circularity and hence with
n-circularity for all nZ5.

3.2. Trinucleotide circular codes

In this section we discuss the classical notion of trinucleotide
circular codes (see for instance Michel et al., 2012).

Definition 3.4. Let XDB3. We call X a trinucleotide circular code if
it is trinucleotide n-circular for all nAN. Equivalently, this means
that any word over the alphabet B written on a circle has at most
one decomposition into words from X.

The following lemma shows that the definition of a trinucleo-
tide circular code as given above is equivalent to Definition 5 from
Michel et al. (2012). We will say that a subword v of the word
wABn is at position ði; jÞ; 1r ir j in w if v starts with the ith and
stops with the jth letter of w.

Lemma 3.5. Let kAN, XDB3 , wAXn a concatenation of k words of
X written on a circle, vj a subword of length 3 of the word w at
position ð j; ð jþ2Þmod 3kÞ. Then X is a trinucleotide circular code if
and only if the following property holds: there exist j1; j2Af1;…;3kg
so that

� vj1 AX; vj1 �1 =2X and
� vj2 AX; vj2 þ1 =2X

Proof. Clearly, if the property does not hold then there are at least
two factorizations of a word w on a circle. The converse direction
is trivial. □

Obviously, a trinculeotide n-circular code can contain at most
20 codons since it must not contain more than one codon from
each complete equivalence class and must exclude the codons
AAA, CCC, GGG, and TTT. This inspires the following definition.

Definition 3.6. Wewill call a trinucleotide n-circular code X maximal
if it contains exactly 20 codons.

Thus, there are at most 320 potential different maximal trinu-
cleotide circular codes. In reality (compare Michel et al., 2012)
there is less than one per cent of this number, namely 12,964,440
maximal trinucleotide circular codes which can code for at most
18 amino acids under the standard version of the genetic code. The
number of maximal trinucleotide n-circular codes for nr3 is not
known yet.

3.3. Comma-free codes

In this section we consider an even more restrictive class of
codes than the trinucleotide circular codes, the so-called comma-
free codes. Comma-free codes were introduced by Crick in the
early 1950s as a possible solution to the frame-shift problem. His
assumption was that the 20 amino acids coded as comma-free
codes can also contain at most 20 codons. This conjecture turned
out to be wrong but the comma-free codes still provide an
interesting class of codes (compare for example Golomb et al.,
1958; Michel et al., 2012).

Definition 3.7. A trinucleotide code XDB3 is called a comma-free
code provided that given any two codons x1; x2AX any sub-codon
of the concatenation x1x2 except for x1; x2 themselves does not
belong to X.

Note, that in the above definition it is intended that the set
fAAAg is not comma-free. We give some examples.

Example 3.8.

� The set X ¼ fGGC;GCCg is a trinucleotide comma-free code.
� The set of codons Y ¼ fATC; TCC;CAAg on the contrary is not a

comma-free code since the concatenation CAA and TCC contains
as a substring ATCAY

CAATCC:

As for trinucleotide circular codes any comma-free code can
contain at most one codon from each complete equivalence class
and must not contain the codons AAA, CCC, GGG, or TTT. We
therefore say that a comma-free code is maximal if it contains
exactly 20 codons. Thus, there are at most 320 potential different
maximal comma-free codes but it was shown in Golomb et al.
(1958, 1958) that there are in fact only 408 maximal comma-
free codes.

The following lemma shows that the definition given above is
equivalent to Definition 4 from Michel et al. (2012).

Lemma 3.9. Let kAN;XDB3, wAXn a concatenation of k words of
X. Then X is a comma-free code if and only if the following property
holds.

For all 1r jr3k�3; j≢1mod 3 a subword v of length 3 of the
word w at position ð j; jþ2Þ is not in X.

Proof. It is obvious that the formulated property implies that a
given code is comma-free. Let us assume that a subset XDB3 is a
comma-free code according to the definition above and there is a
subword vAX of a concatenation w of kwords from X with k42 at
position ð j; jþ2Þwith j≢1mod 3; jo3k�4. Without lost of general-
ity let us assume that j� 2mod 3. Then a subword of w at position
ð j�1; jþ4Þ is a concatenation of two codons from X which
contains as a subword v. That is in contradiction to the comma-
free property of X. □
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It is easy to see comparing Lemmas 3.9 and 3.5 that every
trinucleotide comma-free code is automatically a trinucleotide
circular code. The converse direction is not true.

Consider the following set of codons:

X ¼ fATC; TCC;CAAg:
X is not a comma-free code as shown above but X is a trinucleotide
circular code (compare Corollary 4.6).

Thus, we have the following picture which visualizes the
hierarchy of trinucleotide codes related to their error-detecting
properties (Fig. 2).

4. Results

Throughout this section we assume the standard nuclear
genetic code. It has been shown in Michel (2014) that a maximal
comma-free code can encode at most 13 amino acids. Here is an
example.

Example 4.1. The trinucleotide comma-free code

X ¼ fAAC;AAG;ATA;CAC;GAC;CTA;CAG;GAG;GTA;ATC;

ATG; TTA;CCG;CTC;GCG;GTC;CTG; TTC;GTG; TTGg
encodes the 13 amino acids asparagine, lysine, isoleucine, histi-
dine, aspartate, leucine, glutamine, glutamate, valine, methionine,
proline, alanine, and phenylalanine.

The maximal number of amino acids that can be encoded by a
circular code is 18 (Michel and Pirillo, 2013a). Here is an example.

Example 4.2. The trinucleotide circular code

X ¼ fAAC;AAG;AAT ;ACC;ATC;ATG;ATT ;CAG;CCT ;CGC;

GAC;GAG;GGC;GTA; TAC; TCG; TGC; TGG; TTC; TTGg
encodes the 18 amino acids tryptophan, glutamine, proline,
cysteine, arginine, glycine, tyrosine, lysine, phenylalanine, aspar-
agine, isoleucine, methionine, leucine, aspartate, glutamate, threo-
nine, serine and valine.

In both cases the result was obtained using a computer
programme (compare Fig. 1, Arquès and Michel, 1996). In this
section we will give a short combinatoric proof that, apart from
1-circular codes, a single code cannot represent the whole set of
20 amino acids.

4.1. Characterizing trinucleotide codes

First of all we give a criterion which allows us to test a given
code for its circularity in an easier way than considering all
possible words (an infinite set!) over the alphabet B written on
a circle. We would like to remark at this point that also the flower
automaton allows us to decide if a trinucleotide code is circular or
not without considering all possible words (see Fig. 1, Arquès and
Michel, 1996). The theorem below shows in addition that the
property of n-circularity for a given code X for all nZ4 coincides
with its circularity.

Theorem 4.3. Let XDB3 and put nðXÞ ¼maxf∣π1ðXÞ∣; ∣π3ðXÞ∣g. Then
X is trinucleotide circular if and only if it is trinucleotide n(X)-circular.
In particular, X is trinucleotide circular if and only if it is trinucleotide
4-circular.

Proof. See Appendix A. □

To illustrate the above theorem let us remark the following:
while comma-free codes allow us to detect a frame-shift imme-
diately, circular codes by definition just make sure that eventually

a frame-shift will be discovered. However, Theorem 4.3 shows that
in average a frame-shift will be detected after reading four codons.
The reason is that letters in a coding sequence are soon repeated
since the alphabet is finite. Moreover, the above theorem shows
that circularity is much more connected to the first and third
positions of codons rather than to the second position. Clearly, this
is intuitive since positions one and third are the positions where
codons are concatenated. Thus the theorem just reflects the fact
that if the bases used at positions one and third are quite disjoint,
e.g. when they come from different chemical classes like purine/
pyrimidine or strong/weak, then a frame-shift will be easily
detected. The next useful corollaries of Theorem 4.3 can be easily
verified and explain this phenomenon.

Lemma 4.4. Let XDB3 with π1ðXÞ \ π3ðXÞ ¼∅. Then X is trinucleo-
tide circular.

Proof. See Appendix B. □

Corollary 4.5. The RNY-primeval code is trinucleotide circular.

Proof. The RNY- primeval code consists of 8 amino acids fGly;
Thr;Asp; Ser;Val;Asn; Ile;Alag and the 16 codons

X ¼ fGGT ;GGC;ACT ;ACC;AGC;AGT ;GAC;GAT ;
GTC;GTT ;AAT ;ATT ;AAC;ATC;GCT ;GCCg

with purine as first base and pyrimidine as third base. Thus we
have π1ðXÞ \ π3ðXÞ ¼∅. According to Lemma 4.4 the primeval
code is circular. □

Motivated by Lemma 4.4 we now look at the codes X having
disjoint sets π1ðXÞ and π3ðXÞ. All such codes satisfy Lemma 4.4 and
hence are trinucleotide circular codes. We will consider for each
partition of B¼ B1 [ B2 into disjoint sets the unique maximal
possible set of codons Xmax with

π1ðXmaxÞ ¼ B1; π3ðXmaxÞ ¼ B2:

Clearly, for any code X with disjoint sets π1ðXÞ and π3ðXÞ there is
a maximal code Xmax with π1ðXÞDπ1ðXmaxÞ, π3ðXÞDπ3ðXmaxÞ and
XDXmax. Simply take Xmax to be the set of all codons starting with
a base from π1ðXÞ and ending with a base from π3ðXÞ. The
following table characterizes the amino acids that can be coded
by trinucleotide circular codes Xmax with disjoint sets π1ðXmaxÞ and

Fig. 2. Hierarchy of the classes of trinucleotide n-circular and comma-free codes.
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π3ðXmaxÞ. As one can see the maximal number of amino acids that
can be coded by such a code is 12 for example for B1 ¼ fA;C;Gg and
B3 ¼ fUg. The row corresponding to the primeval code in the table
below is indicated in gray.

π1ðXÞ π3ðXÞ Maximal set of coded amino acids

fAg fC;G; Tg Arginine, asparagine, isoleucine, lysine,
methionine, serine,and threonine

fCg fA;G; Tg Arginine, glutamine, histidine, leucine, and
proline

fGg fA;C; Tg Alanine, aspartate, glutamate, glycine, and
valine

fTg fA;C;Gg Cysteine, leucine, phenylalanine, serine,
tryptophan, and tyrosine

fA;Cg fG; Tg Arginine, asparagine, glutamine, histidine,
isoleucin, leucine, lysine, methiodine, proline,
serine, and threonine

fA;Gg fC; Tg Alanine, asparagine, aspartate, glycine,
isoleucine, serine, threonine, and valine

fA; Tg fC;Gg Arginine, asparagine, cysteine, isoleucine,
leucine, lysine, methionine, phenylalanine,
serine, threonine, tryptophan, and tyrosine

fC;Gg fA; Tg Alanine, arginine, aspartate, glutamate,
glutamine, glycine, histidine, leucine, proline,
and valine

fC; Tg fA;Gg Arginine, glutamine, leucine, proline, serine,
and tryptophan

fG; Tg fA;Cg Alanine, aspartate, cysteine, glutamate,
glycine, leucine, phenylalanine, serine,
tyrosine, and valine

fA;C;Gg fTg Alanine, arginine, asparagine, aspartate,
glycine, histidine, isoleucine, leucine, proline,
serine, threonine, and valine

fA;C; Tg fGg Arginine, glutamine, leucine, lysine,
methiodine, proline, serine, threonine, and
tryptophan

fA;G; Tg fCg Alanine, asparagine, aspartate, cysteine,
glycine, isoleucine, phenylalanine, serine,
threonine, tyrosine, and valine

fC;G; Tg fAg Alanine, arginine, glutamate, glutamine,
glycine, leucine, proline, serine, and valine

The following corollary will be needed in the next section.

Corollary 4.6. The sets

1. X ¼ fATC; TCC;CAAg,
2. X ¼ fTGG;ATG; TTC;AAG;GAG;GAC;GGCg,
3. X ¼ fTGG;ATG; TTC;AAG;GAG;GAC;GGC;CAG;GTA;CGTg

are trinucleotide circular codes.

Proof. See Appendix C. □

4.2. Coding 20 amino acids

In this section we will be interested in finding comma-free,
trinucleotide circular or at least trinucleotide 2-circular codes
which code for a maximal number of amino acids. It is known
from Michel and Pirillo (2013a) that there are maximal trinucleo-
tide circular codes that code for 18 amino acids. Hence, passing to
n-circular codes we are only interested in codes coding for more
than 18 amino acids. We start with the trinucleotide 1-circular
codes.

Lemma 4.7. Assume that X is a trinucleotide 1-circular code that
codes for all amino acids corresponding to the standard nuclear table.
Then X must contain the set

X0 ¼ fTGG;ATG; TTC;AAG;GAG;GAC;GGCg
which is a trinucleotide circular code itself.

Proof. Note that X must contain exactly one codon from each
complete conjugacy class and exactly one codon for each amino
acid. Now such a code must contain the codons TGG19, ATG11,
TTC18 and AAG2 since these codons are the only coding codons
(except ’non-acceptable’ codons AAA and TTT) coding the amino
acids tryptophan, methionine, phenylalanine and lysine. Further-
more such a code must contain the codon GAG8 since the second
codon coding the amino acid glutamate is GAA2 belonging to the
same equivalence class as AAG2. For the same reason GAC5

(aspartate) and GGC15 (glycine) must be a member of the code.
Finally, X0 is a trinucleotide code by Corollary 4.6. □

The next example shows that there are trinucleotide 1-circular
codes that code for all 20 amino acids. The two codes given below
are the only trinucleotide 1-circular codes which code all 20 amino
acids. The result can be obtained using Lemma 4.7 and Table 3 by
straightforward calculations.

Example 4.8. The following codes are the only trinucleotide
1-circular coding for all 20 amino acids:

X1 ¼ fTGG;ATG; TTC;AAG;GAG;GAC;GGC;CAG;GTA;
CGT ; TGT ;AAC;GCC;CTG; TAT ;

ACT ;ATA; TAA;CCA;ACA; TCAg

X2 ¼ fTGG;ATG; TTC;AAG;GAG;GAC;GGC;CAG;GTA;CGT ;
TGT ;AAC;GCC;CTG; TAT ;

ACT ;ATA; TAA;CCA;CAT ; TCCg

We now turn to comma-free codes. Note that the comma-
freeness property is stronger than circularity, hence it is known
fromMichel and Pirillo (2013a) that there is no circular (and hence
no comma-free) code that codes for more than 18 amino acids.
However, here we give a strictly combinatorial proof rather than
computational checking.

Theorem 4.9. There exists no comma-free code coding all 20 amino
acids with respect to the standard (eukaryote) genetic code (Table 2).

Proof. According to Lemma 4.7 such a code must contain the
codons ATG, GAG and TGG. However, the concatenation of ATG and
GAG contains as a substring TGG

ATGGAG:

Thus, the codons TGG, ATG, GAG cannot be elements of any
comma-free code at the same time. □

We now look at 2-circular codes.

Theorem 4.10. There is no trinucleotide 2-circular code that codes
all amino acids with respect to the standard (eukaryote) genetic code
(Table 3).

Proof. See Appendix D. □

Certainly, Theorem 4.10 poses a question for a corresponding
result for 19 amino acids. Since a trinucleotide circular code is in
particular 2-circular and, consequently, there is a 2-circular code
which encodes 18 amino acids, the case of 19 amino acids remains
the sole open case. The following result is obtained by computer
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calculations of all possible 2-circular codes. We cannot yet present
combinatorial proof of the result.

Theorem 4.11. There is no trinucleotide 2-circular code that codes
for 19 amino acids with respect to the standard (eukaryote) genetic
code (Table 3).

We conclude this section with the following observation. In the
proof of Theorem 4.10 it turns out that a contradiction to the existence
of a maximal trinucleotide 2-circular code coding for all amino acids
is obtained after using the fact that it must contain the amino
acids arginine, cysteine, lysine, methionine, tryptophan, phenylalanine,
glutamate, aspartate, glycine, glutamine, valine, asparagine, alanine, and
leucine. Moreover, the maximal trinucleotide circular code identified
on a large gene population of eukaryotes and prokaryotes (Michel
et al., 2012) does not code the amino acids arginine, cysteine, histidine,
lysine, methionine, proline, serine, and tryptophan. Hence we pose the
following challenge.

Problem 4.12. Identify possible sets of amino acids which cannot be
encoded by (n)-circular codes for n¼ 2;3;4.

5. Conclusions

In the present paper five hierarchically ordered classes of trinu-
cleotide codes which include well-known comma-free and circular
codes are introduced. Numerous examples and results obtained
show that all these classes are different and can be ordered by
inclusion. The most restrictive property considered is the comma-
freeness, followed by the circularity, then by 3-circularity, then by
2-circularity and finally by 1-circularity. The hierarchy obtained
makes it possible to test the circularity of a given trinucleotide code
in an easier way than what is currently practised.

The main concern of the paper is to investigate the maximal
number of different amino acids which can be coded taking codes
from different classes of trinucleotide codes. In particular, it is shown
in the present work that it is theoretically impossible to code all
20 amino acids using comma-free, circular or even less restrictive
2-circular codes but it is possible to code them with trinucleotide
1-circular codes. Additionally, it is shown that all codes from a special
class of trinucleotide codes which includes the primeval RNY-code
are automatically circular, and which amino acids they can code are
listed.

Acknowledgments

The authors would like to thank Diego Gonzalez (Italian
National Research Council and UNIBO, Bologna, Italy) and Simone
Giannerini (UNIBO, Bologna, Italy) for introducing us to the subject
and for many helpful and valuable discussions and advice. The
authors are deeply grateful to Alberto Danielli (UNIBO, Bologna,
Italy) for his patience in discussing with us the biological back-
ground and his many pieces of valuable advice and to Christian
Michel (University of Strasbourg) for fruitful discussions. Last but
not least the authors would like to thank the students of the
University of Applied Sciences Mannheim Michail Polishuk and
Dorothea Stahl for technical support.

Appendix A. Proof of Theorem 4.3

Proof. Wewill be using the following notation. If xAB3 is a codon,
then we write x¼ xð1Þxð2Þxð3Þ with xðiÞAB.

One implication is trivial, hence we assume that X is trinucleo-
tide n(X)-circular. Assume that w¼ x1;…; xk is a word over B with
xiAX for all i such that k is minimal with respect to the condition

that w has two different partitions into words from X on a circle.
By assumption k4nðXÞ. We have to distinguish two cases.

Case I: The second partition of the word w comes from a shift of
1 base, i.e. x1ð2Þx1ð3Þx2⋯xkx1ð1Þ is an element of Xk. By definition of
n(X) there must exist sotrk such that xsð1Þ ¼ xtð1Þ because
k4nðXÞ. But then the word xs⋯xt�1 has two different partitions
into codons from X and has length smaller than w – a contra-
diction to the minimality of k.

Case II: The second partition of the word w comes from a shift
of 2 bases, i.e. x1ð3Þx2⋯xkx1ð1Þx1ð2Þ is an element of Xk. By
definition of n(X) there must exist sotrk such that xsð3Þ ¼ xtð3Þ
because k4nðXÞ. If t¼k define xtþ1 ¼ x1. But then the word
xtþ1⋯xkx1⋯xs has two different partitions into codons from X
and has length smaller than w – a contradiction to the minimality
of k. □

Appendix B. Proof of Theorem 4.4

Proof. Let us assume that a concatenation of codons from X w has
two different partitions into words from X on a circle.

Case I: The second partition of the word w comes from a shift of
1 base. Then the third bases of one decomposition become first
bases of the second one. It is a contradiction since π1ðXÞ
\π3ðXÞ ¼∅.

Case II: The second partition of the word w comes from a shift
of 2 bases. Then the first bases of one decomposition become third
bases of the second one. Again it is a contradiction since π1ðXÞ
\π3ðXÞ ¼∅. □

Appendix C. Proof of Corollary 4.6

Proof.

1. By Theorem 4.3 we need to check that X is trinucleotide
3-circular. Note that ∣π1ðXÞ∣¼ 3 and ∣π3ðXÞ∣¼ 2. Therefore, we
list all the combinations of two codons from X

ATCATC;ATCTCC;ATCCAA; TCCTCC; TCCCAA;

TCCATC;CAACAA;CAATCC;CAAATC

The only potential candidates for a second partition are ATC
CAA (shift by one)and CAA TCC (shift by two) because TCC and
ATC are in X. However, AAA and CCA are not in X, hence X is
trinucleotide 2-circular.
By the same argument any combination x1x2x3 of three codons
from X that allows a second partition into codons fromX on a
circle must start with either ATC CAA (shift by one) or CAA TCC
(shift by two). Here are the possible combinations

ATCCAAATC;ATCCAATCC;ATCCAACAA;CAATCCATC;

CAATCCTCC;CAATCCCAA

However, in each case we obtain a contradiction since AAA, AAT,
AAC, CAT, CTC and CCA are not in X.

2. As in the proof above it suffices to check that X is 3 -circular. For
trinucleotide 2-circularity we learn that the only potential
candidates to violate are ATG GAG and ATG GAC since TGG is
in X. However, AGA and ACA are not in X, so X is trinucleotide 2-
circular. Moreover, any combination of three codons from X
that might have a second partition on a circle must start with
ATG GAG or ATG GAC. Easy checking shows that one of them
combined with a third codon from X has a second partition.

3. It suffices to check that X is trinucleotide 4-circular. The
arguments are completely similar to those above. □
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Appendix D. Proof of Theorem 4.10

Proof. By Lemma 4.7 fTGG;ATG; TTC;AAG;GAG;GAC;GGCg is a
subset of X. Note again that X must contain exactly one codon
from each conjugacy class and exactly one codon for each
amino acid.

Since X codes for Glutamine it must contain either CAA or CAG.
Assume that it contains CAA, hence AAC =2X. Then it contains AAT
since X codes for Asparagine and AAT and AAC are the only codons
for Asparagine. But now TGGCAA has two different partitions
on a circle since GGC and AAT are in X – contradiction. Thus CAG
is in X. So

fTGG;ATG; TTC;AAG;GAG;GAC;GGC;CAGgDX

Now it follows that AGT =2X since otherwise TGG CAG would
contradict 2-circularity of X. Hence GTA is in X since it is the only
codon left that has conjugacy class 9. Note that TAG codes for the
Stop signal. Thus

fTGG;ATG; TTC;AAG;GAG;GAC;GGC;CAG;GTAgDX

Next, let us look at conjugacy class 16. There are only two codons
left, namely TCG and CGT in that class. Note that GTC codes for
valine as GTAAX does, so GTC=2X. Assume that TCGAX, then by
coding for arginine we conclude CGCAX and hence by coding for
alanine we have GCTAX. But then CGCTGG has two different
partitions since GCT and GGC are in X – contradiction. So CGTAX

fTGG;ATG; TTC;AAG;GAG;GAC;GGC;CAG;GTA;CGTgDX

Note that this is a trinucleotide circular code by Lemma 4.6. By
trinucleotide 2-circularity applied to ATGCGTAX2 we now con-
clude that TGC=2X since GTAAX. Hence, since X codes for cysteine,
we have that TGTAX. So

fTGG;ATG; TTC;AAG;GAG;GAC;GGC;CAG;GTA;CGT ; TGTgDX

Now we have the situation that TGG and ATG are both contained in
the code and the word ATGTGT has two partitions into words from
X on a circle since TGT ;GTAAX is true. This contradicts the
2-circular property of the code X. □
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