Calculabilité et complexité

Contrôle terminal - rattrapage

Les exercices sont indépendants. Le barème est donné à titre indicatif.

Exercice 1 : une variante des machines de Turing (10 points)

Définition. On considère un alphabet Σ contenant les symboles \triangleright et \sqcup , mais ni le symbole \rightarrow ni le symbole \leftarrow . On définit une T-machine par le quintuplet $(\Sigma, K, \delta, s, H)$ où K, s et H sont respectivement un ensemble d'états, un état de départ et un ensemble d'états d'arrêt comme pour une machine de Turing standard. $\delta: K \times \Sigma \to K \times (\Sigma \setminus \{\triangleright\} \cup) \times \{\to, \leftarrow\}$ est une fonction de transition qui à un couple (q, α) associe un triplet (p, β, f) où p est un nouvel état, β une lettre de $\Sigma \setminus \{\triangleright\}$ et f une flèche indiquant un déplacement soit à droite (\to) soit à gauche (\leftarrow) avec les signification habituelle des machines de Turing. Autrement dit, une T-machine est une variante des machines de Turing telles que nous les avons vues en cours pour lesquelles, à chaque transition, on écrit une lettre et on déplace la tête de lecture/écriture.

- 1- Donnez pour une T-machine les définitions correspondant à configuration, pas de calcul et calcul. Par analogie avec les machines de Turing, on appelle langage T-décidable un langage reconnu par une T-machine : donnez une définition précise de cette notion. Même chose pour la notion de fonction T-calculable.
- 2- Étant donnée une T-machine M, montrez de manière constructive qu'il existe une machine de Turing M' équivalente à M dans un sens que vous préciserez. Vous montrerez précisément comment on construit la machine M' à partir de la machine M. Déduisez-en que les langages T-décidables sont récursifs. Inversement, montrez que tout langage récursif est T-décidable.

On appelle RT-machine une T-machine où le seul déplacement possible de la tête de lecture/écriture est vers la droite. On dit que $f: \Sigma^* \to \Sigma^*$ est une fonction RT-calculable si il existe une RT-machine qui la calcule.

3- Montrez que si f est une fonction récursive et L est un langage récursif, il n'est en général pas vrai que f(L) soit récursif.

En revanche, montrez que si L est un langage récursif et f est une fonction RT-calculable alors le langage f(L) est récursif.

Exercice 2 : indécidabilité (10 points)

- 1- On définit la fonction β de \mathbb{N} dans \mathbb{N} comme suit : pour tout entier n, $\beta(n)$ est le plus grand entier m tel qu'il existe une machine de Turing avec exactement n états qui s'arrête en partant d'un ruban vide en produisant la configuration $(h, \triangleright \underline{\sqcup} I^m)$.
 - a) Montrez que $\beta(n+3) > \beta(n)$.
 - b) Montrez que si f est une fonction numérique récursive de \mathbb{N} dans \mathbb{N} calculée en unaire par une machine de Turing M_f avec k_f états, on a $\beta(2n+1+k_f) \geqslant f(n)$.
 - c) Montrez que la fonction β n'est pas récursive (vous pourrez utiliser la question précédente en considérant la fonction f telle que $f(n) = \beta(3n)$)
- **2-** On dit qu'une machine de Turing $M=(K,\Sigma,\delta,s,H)$ a un comportement spatial (k,l)-affine avec le mot w en entrée si et seulement si pour toute configuration $(q,\triangleright u\underline{\sigma}v)$ telle que $(s,\triangleright \underline{\sqcup}w)\vdash_M^* (q,\triangleright u\underline{\sigma}v)$ on a $|u\sigma v|\leqslant k|w|+l$.

On dit qu'une machine de Turing a un comportement spatial affine avec le mot w en entrée si et seulement si, il existe deux entiers k et l tels que M a un comportement spatial (k, l)-affine avec le mot w en entrée.

- a) Montrez que le problème suivant est décidable : Étant donnés, une machine de Turing M, un mot w et deux entiers k et l, est-ce que M a un comportement spatial (k,l)-affine avec le mot w en entrée ?
- b) Montrez que le problème suivant est indécidable : Étant donnés une Machine de Turing M et un mot w, est-ce que M a un comportement spatial affine avec le mot w en entrée ?