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Motivations and Context
Constructions and Computations in Geometry

» Exact Real Computations vs. Approximations
» How to Handle Continuous Objects in a Discrete Setting ?

Handling Geometric Computations in Formal Proofs ?

» e.g. Geometric Algebras : Fuchs, Thery (ADG 2010)
» Real Computations are Isolated, but Eventually Exact Real

Computation is Required
Computing and Reasoning using the Same Framework

» Computing is Interesting
» Reasoning about such Computations is even BettejcU3e @V@
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Our Goal
Foundational but Pratical as well
» Working on the Foundational Side. . .

» ... but with an Effective Model based on Integers

» Relies on Mathematical Results presented by Chollet et al.
in PR2008 and TCS2012

Several Concrete Applications so far
» Exact Real Functions Representation
(Chollet, Wallet, Fuchs et al. : IWCIA 2009)

» Discrete Ellipsis Connectivity
(Chollet, Wallet, Andres et al. : CompIMAGE 2010)

» Arithmetization of A Circular Arc
(Richard, Wallet, Fuchs et al. : DGCI 2009) jcuse @ %
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The Harthong-Reeb line HR .,

Outline

The Harthong-Reeb Line HR, (Definitions and Properties)
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The Harthong-Reeb line HR .,

The continuum onto a computer ?
Working relatively to a given scale

» At a given scale ; points are of a specified size.
» We can use as many scales as necessary.

» To obtain enough points between two points ; it is always
possible to change the scale.

jicu3e @ %x.
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The Harthong-Reeb line HR .,

The continuum onto a computer ?

What is used

» A constructive axiomatic of the real line (Bridges, 1999)

» A way to define what are the real numbers that can be
computed.

» A model of the continuum (Harthong-Reeb, 1984)

» In order to define what could be the continuum in the
discrete world.

» A nonstandard arithmetic (Laugwitz-Schmieden = 60,
Martin-L6f =~ 80)
» Define what is large and what is small.

scu3e @ ¥
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The Harthong-Reeb line HR .,

A discrete model of the continuum

Obtain enough numbers between two numbers

» Choose an infinitely large integer w as new unit 1,, =g w.

» Distinguish between 2 classes of elements :
limited/standard or infinitely large

» Hence, between two integer numbers, there is as many
integers as you want.

The Harthong-Reeb line

HR, ={X€Z, IneN, |X| < nw}

HR., is a rescaling over the chosen non-standard arithmetic.
scuse @ %x.
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The Harthong-Reeb line HR .,

A discrete model of the continuum

The real line R is similar to the discrete line 7 seen from far away.
The Harthong-Reeb line
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The Harthong-Reeb line HR .,

The Harthong-Reeb line

Operations
Let X and Y be 2 elements of HR,..
» X=,Y< foralninN, nX-Y|<w
» X>, Yo existsanninN, n(X—-Y)>w
> X+, Y =g X+Y.
» X X Y =ger | XY /w].
0., =qer 0 @nd 1, =gef w.
> —uX =ger —X.
If X is such that X £, 0 X De =gy Lwﬂ

v

v
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The Harthong-Reeb line HR .,

Axiomatic Presentation of the Constructive Real Line

Douglas Bridges (1999)

» A system (R,+, x,=,>,0,1,0pp, Inv) which satisfies a list
of 17 axioms.

» We shall call a Bridges-Heyting ordered field any system
which satisfies these axioms.

Three Groups of Axioms

» Algebraic Operations
» Order Structure
» Archimedes’ axiom and a Constructive Least-Upper Bound

Principle
scuse @ %x.
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The Harthong-Reeb line HR .,

HR,, is a Bridges-Heyting ordered field

Theorem
The Harthong-Reeb line is a Bridges-Heyting ordered field.

Here, the Harthong-Reeb line denotes the complete system

(HRwy tFws Xwy =w) Sw va 1un Oppw, Invw)

Corollary

This result shows that the Harthong-Reeb line is a nonstandard
model of the constructive real line.

Which Integers can be used to build the Harthong-Reeb
line ?

» An interface : Axiomatic Non-Standard Integers
» An Implementation : Laugwitz-Schmieden Integers;cse @Y{&
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Non-standard Integers

Outline

A Theory of Non-Standard Integers
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Non-standard Integers

A Theory of Non-Standard Integers

» A parameter type A (denoting non-standard integers)
» Usual operations +,-,*, <,< and their properties

» Elements of HR,, are elements of A together with a proof
that3n: A, 1imnAO0 < nA(|x| < nxw).

Extra-properties regarding non-standard features

(LIM1) The integer 1 is limited.

(LIM2) The sum and the product of two limited integers
are limited.

(LIM3) There exists integers which are not limited (e.g. w).
(LIM4) If X is limited and | Y| < | X|, then Y is itself limited.

(LIMS) ... jcuse @ %
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Non-standard Integers

Induction principle, LIMS and overspill principle

» These three parameters allow to extend computing and
reasoning to non limited integers such as w.
» Induction principle

Parameter nat_like_induction :
forall P : A —> Type,

P a0 —>
(forall n:A, (lim n /\ 0 <= n) ->
Pn->P (plusA n al)) —>

forall n:A, (lim n /\ 0<= n) -> P n.

» (LIM5) Extends sequences defined on limited integers to
infinitely large indices

» (Overspill) Extends properties which hold for limited
integers to infinitely large integers
scuse @ %x.
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Non-standard Integers

Algebraic Axioms for HR(R1)

Algebraic Structure
R11) x+y=wy+x

(

(R1.2) (x+y)+z=wXx+(y+2)
(R1.3) 0+ x =y x

(R1.4) x+(—x)=w 0

(R1.5) xy =w yx

(R1.6) x(yz) =w (xy)x

(R1.7) 1x =y x

(R1.8) xx™ ' =, 1forx #0
(R1.9) x(y +2) =w xy + xz

scu3e @ ¥
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Non-standard Integers

The second group of axioms for HR(R2)

Properties of the order w.r.t. the algebraic properties
(R2.1) =((x >y) A (y > X))

(R2.2) (x>y)=Vz((x>2)V(z>y))

(R23) ~(x#y)=x=y

(R2.4) (x> y)=Vz((x+2)> (y+ 2))

(R2.5) (x>0)A(y>0)=xy>0

—_ ~— ~— ~—

scu3e @ ¥
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Non-standard Integers

The third group of axioms for HR(R3)

Special properties of the order relation :

(R3.1)Archimedes Axiom.
For all x € R, there exists ne€ Z s.t. n > x.

(R3.2) The constructive Upper-bound principle.
Let S be a non-empty subset of HR,, s.t.
» dbe HR,Vse S b>s
» Va,f e HR, (B>a)=(Vse€S >8)V(Ise S s> )
Then, there exists b € HR,, which is an upper bound of S :
»VseS b>s
» Vo' (b>b)=(3s€ S s> V)

scu3e @ ¥
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Implementation - Laugwitz-Schmieden

Outline

An Implementation using Laugwitz-Schmieden Integers
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Implementation - Laugwitz-Schmieden

Laugwitz-Schmieden
How constructive is the numerical system HR,, ?

» Let us consider the sequences a = (an)nen With a, € Z.
» equipped with the following equality :

a= bifthere exists N e Ns.t.vn> N, a, = bp.

» An Q-integer a is an equivalence class for this equality. We
denote the set of Q-integers by Zgq.

Examples
» (2,2,2,2,2,2,...) denotes the Q-integer 2.
» (1,5,4,2,2,2,...)=(2,2,2,2,2,2,...)
> W= (20721722723’24’257”_) jCU3E @Y@
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Implementation - Laugwitz-Schmieden

Basic Operations for Laugwitz-Schmieden Integers
Operations and relations on Zqg, :
> a+ b =ger (an+ bp) and —a =ger (—an) and
ax b =ger (@n x bn);
» a> b =g [(AN VN> N) a, > by] and
az> b=y [(ANVYNn> N) a, > by);
> [a] =qer (|anl).

Three classes of elements :

» a= (an)nen is standard if 3p € Z such that
N e N, vn > N, a, = p otherwise a is nonstandard.

» a = (an)nen is infinitely large if (a,) is increasing
(lim ap ~ +o0).

» a=(ap)nen is limited if 3p € Z such that jcuse @ %
stdpAO<pAlal <p.
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Implementation - Laugwitz-Schmieden

Not Quite A Model for Our Non-Standard Integers

The usual properties which hold for Z are not always
verified for Laugwitz-Schmieden Integers.

For instance
(Va,beZq) (a=b)Vv (b= a) (1)

is not valid : e.g. take @ = ((—1)")nen and b = ((—1)" 1) pen.

Laugwitz-Schmieden is not an actual model of the NS
Integers we use to build the HR,, line.

» Work-around : proposing an alternative set of axioms
(only axioms R2.2, R2.3 and R3.2 -the least upper bound
principle- need to be fixed [Chollet et al. TCS 2012])

» It requires, either restricting the elements of HR,, or
changing the axioms statements. jcuse @ %

22/30



Implementation - Laugwitz-Schmieden

Work-around : the congruent relation
The congruent relation and Axiom R2.3
x = (xp) and y = (yn) of HR,, are congruent (x A y ) if

Xk =Yk X=X
Wk wy

(Vr € N)(3K € N)(vk > K)(VI > K)

1
Sf
r

» fixing R2.3 into R2.3” :
VX, Yy EHRuy XA Y N(X #u YY) = X = Y.

Axioms R2.2 and R3.2

» Ad-hoc axioms R2.2’ and R3.2’ are tuned to fit into
Laugwitz-Schmieden integers.

» |t leads to an alternative version of the continuum [Chollet

et al, TCS2012]. The proofs are formalized in Coq mgm&’{&
confirmed to be correct.
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Implementation - Laugwitz-Schmieden

Updating the Least Upper Bound Principle (R3.2)

» If Sis a nonempty subset of HR,, that is bounded above relative
to the relation >,, and such that for all (a, 3) € HR2 where 3 is
an upper bound of S and o € S and for(a, b) € HR? such that
a <, a<, b<, 8, either bis an upper bound of S or else there
exists s € S with s >, a. Then there exists an element - € HR,,
which is a least upper bound of S in the following weak
meaning :

I Vu <, 7,3s € Ssuch that i <, s (identical to )
I ¥6 € HR,, such that r <,, ¢,
(3b upper bound of S)r <, b <, d§

» Proving this statement is completely different from the
initial proof of R3.2. It inspects the actual elements of the
sequences denoting Laugwitz-Schmieden integers and
creates elements such as 7 using ranks in the sequences
(Set-exists is required). JCU3E @y@
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Implementation - Laugwitz-Schmieden

Work-around : Choosing a (Stable) Subset of HR,,

Considering only elements of HR_congruent to 0
» They are Cauchy sequences, when viewing them as
rationnals (after dividing by w)
» They correspond to Bishop constructive reals

» It should be possible to connect them to CoRN and prove

that they are isomorphic to the constructive reals of CoRN
(work in progress)

scu3e @ ¥
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Implementation - Laugwitz-Schmieden

Computing Continuous Functions
» The arithmetization of the function t — %

#
—

» Computed using code extracted from Coq into Ocaml

» Uses Euler Scheme to compute approximations of the
cgntinuous function X : T — X(T) which is the solutlon O@YKL
X =F(X,T),X(A)=B.Here, F(X,T)=T/3. =
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Implementation - Laugwitz-Schmieden

Technical Aspects/Problems in the Formal Proofs

Proof-irrelevance
For all functions with preconditions, we rely on proof-irrelevance
in Prop.

Parametricity

Parametrizing decision procedures (such as omega) like we do
for rings.

Y -types for Existentials

Set-exists constructions (Z-types) are required to complete the
proof of the weak least upper bound principle, and well as the
connection to CoRN.

Dependent Rewriting

Dependent Rewriting with an Alternative Equality (which_is N
decidable, but is not Leibnitz equality) is needed ICU3E @ i
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Conclusion

Outline

Conclusions and Work in Progress

scu3e @ ¥

28/30



Conclusion

Summary
A non-standard approach

» Non Standard : a real theory to talk about infinitesimals.
» Approximations are replaced by Infinitesimals.

» A scalable framework : one can change its point of view to
have as many points as we want inbetween 2 given points
of the line (this is achieved by changing the scale).

What we formalized in Coq so far

» Proofs of Bridges axioms using the axiomatic description

» Computations (Ocaml extraction) and Proofs using an
actual implementation of non-standard integers based on
Laugwitz-Schmieden integers

» Available as a browsable development on the web#CU3E @%.
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Conclusion

Future Work

Work in progress

» Switching from Prop-exists to Set-exists
» Connecting our development to CoRN

» Computing continuous functions inside Coq (instead of
extracting in Ocaml)

Longer term goals
» Applications to geometric predicates computations
(orientation, in-circle, etc.)

» Computing linear transformations in discrete geometry
such as rotations (an on-going research project with the
discrete geometry team in Strasbourg) {CU3E @y@
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