
Automatisation, maintenance et réutilisation des

démonstrations dans l’assistant de preuves Coq :

applications aux mathématiques et à la géométrie

Directeur de thèse : Nicolas Magaud

January 30, 2023

1 Résumé (en français)

Les assistants de preuve comme Coq permettent, dans un même outil, d’implanter sous forme fonction-
nelle des objets mathématiques et des opérations sur ces objets, ainsi que de démontrer formellement
leurs propriétés. Ce travail de spécification et de preuve est confié à l’utilisateur, le système vérifiant
simplement que le raisonnement construit est correct. Cette approche permet de s’affranchir des
limitations des outils automatiques et de tirer profit, à plein, de l’intelligence et de l’inventivité hu-
maines. Néanmoins, plus les preuves sont complexes, et plus il faut fournir aux développeurs des outils
pratiques pour les construire, les maintenir et les réutiliser facilement.

L’objectif de cette thèse sera de rendre plus robustes et facilement réutilisables, y compris d’un
système à un autre, de telles preuves. On cherchera à étendre le champ d’application d’outils de
preuves automatiques comme Vampire, CVC5 ou Z3 et à faciliter leur interaction avec Coq (en trans-
formant les traces de preuves produites en certificats vérifiables par Coq). On étudiera également
comment rendre plus robustes, génériques et interopérables, les étapes de raisonnement non automa-
tisées. Leur réutilisation pour prouver formellement de nouveaux résultats en sera ainsi facilitée. Les
développements sur la géométrie réalisés dans l’équipe serviront de premiers cas d’étude et permettront
d’évaluer les performances des outils proposés.

2 Sujet détaillé (en anglais)

Abstract: Proof assistants like Coq are increasingly popular to help mathematicians carry out
proofs of the results they conjecture. However, formal proofs remain highly technical and are difficult
to reuse. In this thesis, we propose to design and implement new tools to improve the robustness, the
inter-operability and the reuse of formal proof developments. We hope this will make proving new
results formally easier.

Keywords: automated theorem proving, interactive theorem proving, Coq, tactics, interoperability
of systems

Expected skills : software development, interactive theorem proving, Coq functional programming,
logic

Skills to be acquired during the PhD programme: building large proof developments, inter-
operability of proof systems, geometry and combinatorics, implementation of proof transformations
and translations from one system to another.

2.1 Scientific context

Proofs assistants such as Coq [7, 4] and Lean [9] allow, using the same infrastructure, not only to
implement mathematical objects and their operations using the functional programming paradigm,
but also to formally prove some of their properties. This specification and proof task is devoted to the
user whereas the system checks that the reasoning arguments are correct. Thanks to this approach,

1



relying on human intelligence, there are no limitations related to the power of the automatic decision
procedures available. However, as proofs grow in size and complexity, it becomes unavoidable to have
practical tools to help the user carry out some proof steps automatically. Decision procedures for
decidable fragments of the considered theories are sometimes available but they are a lot less powerful
than automated first-order provers such as Vampire [14], CVC4 [3] or Z3 [8]. In addition to these
generic provers, some more specialized provers, especially one dedicated to projective geometry [5, 6,
11], have been recently developed in the IGG team.

2.2 Research project and challenges

Formal proof developments (proof scripts) developped in Coq or other modern proof assistants such as
Lean [9] or Isabelle/HOL [13] get bigger and bigger1. They often embed various specific tools to handle
some pieces of the proofs automatically. Hence writing the initial proof development, maintaining it
and compiling (= checking the correctness of) it becomes more and more challenging. In this thesis
project, we propose to work in two directions to help writing the proofs and maintaining them once
they are written.

First, we shall enhance the communication between the automated provers and Coq (by trans-
forming the proof traces they produce into proof certificates automatically checkable by Coq). This
could be achieved throught the approach proposed in [1, 10]. A first application would consist in mak-
ing the prover based on projective geometry inter-operate with Coq. The automated tool could then
be directly called from a proof session inside the Coq proof assistant and shall produce a Coq proof
script which enables to go one step further in the proof. The next step would then be to integrate
this reasoning mechanisms directly inside the Coq proof assistant and provide them as interactive
tactics, either implemented as Ocaml plugins or using using some meta-programming tools such as
Coq-elpi [19] or MetaCoq [18].

Second, as proofs grow in size, technicality and complexity, reusing an older formal Coq proof script
is often quite difficult especially because successive versions of Coq may lead to some incompatibilities.
This is mainly caused by the fact that Coq is a research tool and remains under heavy development.
In this project, we propose to design and implement new tools to help making completed proof devel-
opments more resilient and more easily reusable in newer versions of Coq. We aim at proposing some
automatic proof scripts transformations to identify and then fix the main weaknesses of Coq proof
scripts. This ranges from detecting the use of a non-properly introduced variable to enhancing the
structure of the proof scripts. Another application could be to automatically replace some tactics with
some equivalent ones (w.r.t the considered goals) which are faster, simpler, non deprecated yet, etc.
All these examples of proof engineering could be used in conjunction with the recent works of Talia
Ringer [17, 16, 15] on proof repair. Eventually, proof engineering should reach the same standards as
sofware engineering, making proofs more reliable, more easily reusable and thus easier to deal with by
non-specialists.
In the longer run, the proposed automatic transformation tools for formal proofs could be extended to
automatically transform some proof scripts from one (older) version of Coq to a newer one. It could
also be used to carry out proof transformations from one proof assistant, e.g. Lean or Isabelle/HOL
to another as it is done in Dedukti [2]. This work would integrate smoothly in the European research
network on digital proofs2 led by Frédéric Blanqui (Laboratoire de Méthodes Formelles3, ENS Paris-
Saclay).

To evaluate the performances of these tools, we shall apply them to large proof developements
such as those underway in our research team. We shall especially focus on the study of finite models
of projective geometry where the size of the models makes the formalization in an interactive system
like Coq very challenging, pursing some recent work on the smallest projective space PG(3,2) [12].
Other applications are envisioned in the field of combinatorics of geometric objects. Among them,
we shall consider enumerating some families of combinatorial maps, and establish some non-trivial
equivalences between some families of maps and some families of lambda-terms like those presented
in [20]. We are also interested in applying our expertise to other areas of mathematics.

1Check out some examples at https://github.com/coq-community or https://www.isa-afp.org/
2https://europroofnet.github.io/
3https://lmf.cnrs.fr/

2



References

[1] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Ben-
jamin Werner. A modular integration of SAT/SMT solvers to coq through proof witnesses. In
Jean-Pierre Jouannaud and Zhong Shao, editors, Certified Programs and Proofs - First Interna-
tional Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086
of Lecture Notes in Computer Science, pages 135–150. Springer, 2011.

[2] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine
Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. De-
dukti: a logical framework based on the λ − Π-calculus modulo theory. Manuscript http:

//www.lsv.fr/~dowek/Publi/expressing.pdf, 2016.

[3] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages
171–177. Springer, 2011.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development,
Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[5] David Braun. Approche combinatoire pour l’automatisation en Coq des preuves formelles en
géométrie d’incidence projective. PhD thesis, Université de Strasbourg, sept. 2019.

[6] David Braun, Nicolas Magaud, and Pascal Schreck. Two new ways to formally prove dandelin-
gallucci’s theorem. In Frédéric Chyzak and George Labahn, editors, ISSAC ’21: International
Symposium on Symbolic and Algebraic Computation, Virtual Event, Russia, July 18-23, 2021,
pages 59–66. ACM, 2021.

[7] Coq development team. The Coq Proof Assistant Reference Manual, Version 8.14.0, 2021.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[9] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean Theorem Prover (System Description). In Proceedings of CADE 2015, volume
9195 of LNCS, pages 378–388. Springer, 2015.

[10] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and
Clark W. Barrett. Smtcoq: A plug-in for integrating SMT solvers into coq. In Rupak Majumdar
and Viktor Kuncak, editors, Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes
in Computer Science, pages 126–133. Springer, 2017.

[11] Nicolas Magaud. Integrating an automated prover for projective geometry as a new tactic in
the coq proof assistant. In Chantal Keller and Mathias Fleury, editors, Proceedings Seventh
Workshop on Proof eXchange for Theorem Proving, Pittsburg, USA, 11th July 2021, volume
336 of Electronic Proceedings in Theoretical Computer Science, pages 40–47. Open Publishing
Association, 2021.

[12] Nicolas Magaud. Proof pearl: Formalizing spreads and packings of the smallest projective space
pg(3, 2) using the coq proof assistant. In June Andronick and Leonardo de Moura, editors,
13th International Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022,
Haifa, Israel, volume 237 of LIPIcs, pages 25:1–25:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

3



[13] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[14] Alexandre Riazanov and Andrei Voronkov. The design and implementation of VAMPIRE. AI
Commun., 15(2-3):91–110, 2002.

[15] Talia Ringer. Proof Repair. PhD thesis, University of Washington, 2021.

[16] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. QED at large: A
survey of engineering of formally verified software. Found. Trends Program. Lang., 5(2-3):102–281,
2019.

[17] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Adapting proof automation
to adapt proofs. In June Andronick and Amy P. Felty, editors, Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles,
CA, USA, January 8-9, 2018, pages 115–129. ACM, 2018.

[18] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze,
Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The metacoq project. J. Autom.
Reason., 64(5):947–999, 2020.

[19] Enrico Tassi. Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi λProlog
dialect). The Fourth International Workshop on Coq for Programming Languages: CoqPL 2018,
January 2018.

[20] Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and normal
planar lambda terms. Logical Methods in Computer Science, 11(3), 2015.

4


