
Contrôle Continu n°2 M1 ILC, ISI, RISE Durée: 1h15

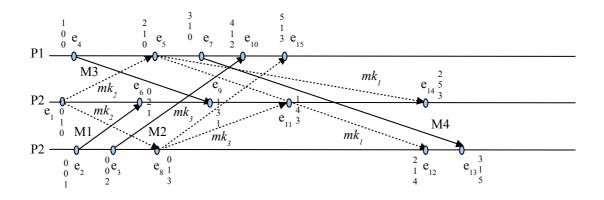
Documents interdits

1. Algorithme de Chandy et Lamport

1.1. Appliquer l'algorithme de Chandy et Lamport (dont le texte est rappelé en annexe 1), au scénario suivant d'échange de messages entre trois processus P1, P2 et P3. Pour cela compléter le tableau en annexe 2.

Remarque : pour chaque processus P1, P2, P3, « c(i) / reçu(i) » représente le contenu du canal en entrée en provenance de Pi et « reçu(i) » le booléen associé à la réception du marqueur sur ce canal.

Evénement	e1	e2	e3	e4	e5	e6	e7
enreg_état ₁	FAUX				VRAI		
C(2)/reçu(2)					Ø,V		
C(3)/reçu(3)					Ø, F		
Action				E(M3)	$R(mk_2), D(mk_1)$ enreg. el_1		E(M4)
enreg_état ₂	VRAI						
C(1)/reçu(1)						Ø,F	
C(3)/reçu(3)						{M1}, F	
Action	D(mk ₂) enreg. el ₂					R(M1)	
enreg_état ₃					,		
C(1)/reçu(1)							
C(2)/reçu(2)			_				
Action		E(M1)	E(M2)				


Evénement	e8	e9	e10	e11	e12	e13	e14
enreg_état ₁							
C(2)/reçu(2)			Ø, V				Ø, V
C(3)/reçu(3)			{M2}, F				{M2}, V
Action			R(M2)				R(mk ₃) envoi à P _c
enreg_état ₂							
C(1)/reçu(1)		{M3}, F		{M3}, F		{M3}, V	
C(3)/reçu(3)		{M1}, F		{M1}, V		{M1}, V	
Action		R(M3)		R(mk ₃)		$R(mk_1)$ envoi à P_c	
enreg_état ₃	VRAI						
C(1)/reçu(1)	Ø, F				Ø, V		
C(2)/reçu(2)	Ø, V				Ø, V		
Action	R(mk ₂), D(mk ₃) enreg. el ₃				R(mk ₁) envoi à P _c		

1.2. On suppose que les états relevés par les processus sont envoyés à un processus collecteur P_c qui recueille l'état global. Indiquer les état des canaux c_{ij} reçus par P_c .

cij	j=1	j=2	j=3
i=1		{M3}	Ø
i=2	Ø		Ø
i=3	{M2}	{M1}	

2. Coupures cohérentes et estampillage vectoriel de Lamport

2.1. On associe un estampillage vectoriel de Lamport aux événements du scénario de l'exercice 1. Indiquer les valeurs de toutes estampilles.

2.2. Indiquer la coupure (e_i, e_j, e_k) correspondant aux états locaux enregistrés par P1, P2 et P3 qui ont été envoyés à P_c. Montrer que cette coupure est cohérente en utilisant la caractérisation par l'estampillage vectoriel de Lamport.

$$C_1 = (e_5, e_1, e_8)$$

 $EV(C_1) = (2, 1, 3)$
 $EV(e_5) = (\mathbf{2}, \mathbf{1}, 0)$; $EV(e_1) = (0, 1, 0)$; $EV(e_8) = (0, 1, \mathbf{3})$;
On a bien $EV(C_1) = Max$ ($EV(C_1)$) pour $i = 5, 1, 8$

Donc la coupure est cohérente.

2.3. Donner un exemple de coupure incohérente en justifiant au moyen de l'estampillage vectoriel de Lamport

Par exemple:

$$C_2$$
= (e₁₀, e₆, e₂)
 $EV(C_2)$ = (4, 2, 1)
 $EV(e_{10})$ = (4, 1, 2); $EV(e_6)$ = (0, 2, 1); $EV(e_2)$ = (0, 0, 1);
 $EV(C_2)$ < Max ($EV(C_i)$) pour i = 10, 6, 2 : (4, 2, 1) < (4, 2, 2)

Donc la coupure est incohérente.

2.4. Preuve : montrer que dans le cas général de n processus $P_1, \ldots P_n$ reliés par des canaux FIFO, l'algorithme de Chandy et Lamport garantit que l'état global $(el_1, el_2, \ldots el_n)$ envoyé au processus P_c constitue une coupure cohérente. Pour cela vous pouvez raisonner par l'absurde.

Preuve

Supposons que la coupure correspondant à $(el_1, el_2, ... el_n)$ n'est pas cohérente. Cela signifie qu'il existe un processus P_i , $i \in [1, n]$ tel que el_i contient un événement e_{ix} correspondant à la réception d'un message M, dont l'émission n'est pas captée dans l'état el_j du processus émetteur P_j . Soit e_{jy} l'événement correspondant à l'émission de M par P_j .

Puis que e_{jy} n'est pas capté dans el_j , cela signifie que e_{jy} est postérieur à l'envoi du marqueur mk_j par le processus P_j (en effet l'envoi du marqueur a lieu lorsque le processus capte son état local). Or les canaux étant FIFO par hypothèse, le marqueur mk_j devrait atteindre le processus P_i avant le message M, puisque son envoi est antérieur à celui de M. On aboutit donc à une **contradiction**, puisque si tel était le cas, la réception de M par P_i serait postérieure à celle du marqueur, et donc l'événement e_{ix} ne serait pas capté dans el_i .

Donc la coupure ne peut pas être incohérente.